Alexander, D.H., Novembre, J.,Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664.
|
Armstrong, J., Hickey, G., Diekhans, M., Fiddes, I.T., Novak, A.M., Deran, A., Fang, Q., Xie, D., Feng, S., Stiller, J., et al., 2020. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246-251.
|
Audano, P.A., Sulovari, A., Graves-Lindsay, T.A., Cantsilieris, S., Sorensen, M., Welch, A.E., Dougherty, M.L., Nelson, B.J., Shah, A., Dutcher, S.K., et al., 2019. Characterizing the major structural variant alleles of the human genome. Cell 176, 663-675 e619.
|
Bao, J., Xiong, J., Huang, J., Yang, P., Shang, M.,Zhang, L., 2024. Genetic diversity, selection signatures, and genome-wide association study identify candidate genes related to litter size in Hu sheep. Int. J. Mol. Sci. 25, 9397.
|
Browning, B.L., Tian, X., Zhou, Y.,Browning, S.R., 2021. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880-1890.
|
Bu, D., Luo, H., Huo, P., Wang, Z., Zhang, S., He, Z., Wu, Y., Zhao, L., Liu, J., Guo, J., et al., 2021. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 49, W317-W325.
|
Bushnell, B. 2014. BBMap: a fast, accurate, splice-aware aligner.
|
Cameron, D.L., Baber, J., Shale, C., Valle-Inclan, J.E., Besselink, N., van Hoeck, A., Janssen, R., Cuppen, E., Priestley, P.,Papenfuss, A.T., 2021. GRIDSS2: comprehensive characterisation of somatic structural variation using single breakend variants and structural variant phasing. Genome Biol. 22, 202.
|
Chen, H., Patterson, N.,Reich, D., 2010. Population differentiation as a test for selective sweeps. Genome Res. 20, 393-402.
|
Chen, S.F., Zhou, Y.Q., Chen, Y.R.,Gu, J., 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884-890.
|
Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., et al., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics Bioinf. 19, 578-583.
|
Chen, X., Schulz-Trieglaff, O., Shaw, R., Barnes, B., Schlesinger, F., Kallberg, M., Cox, A.J., Kruglyak, S.,Saunders, C.T., 2016. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220-1222.
|
Chong, Y.Q., Jiang, X.P.,Liu, G.Q., 2022. An ancient positively selected BMPRIB missense variant increases litter size of Mongolian sheep populations following latitudinal gradient. Mol. Genet. Genomics 297, 155-167.
|
Clark, E.L., Bush, S.J., McCulloch, M.E.B., Farquhar, I.L., Young, R., Lefevre, L., Pridans, C., Tsang, H.G., Wu, C., Afrasiabi, C., et al., 2017. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 13, e1006997.
|
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W.,McCabe, A.M., 2009. The last glacial maximum. Science 325, 710-714.
|
Clay, M.R., Varma, S.,West, R.B., 2013. MAST2 and NOTCH1 translocations in breast carcinoma and associated pre-invasive lesions. Hum. Pathol. 44, 2837-2844.
|
Cleal, K.,Baird, D.M., 2022. Dysgu: efficient structural variant calling using short or long reads. Nucleic Acids Res. 50, e53.
|
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
|
Deng, J., Xie, X.L., Wang, D.F., Zhao, C., Lv, F.H., Li, X., Yang, J., Yu, J.L., Shen, M., Gao, L., et al., 2020. Paternal origins and migratory episodes of domestic sheep. Curr. Biol. 30, 4085-4086.
|
Du, L.X., Li, J.Q., Ma, N., Ma, Y.H., Wang, J.M., Yin, C.A., Luo, J., Liu, N., JIa, Z.H.,Fu, C.X., 2011. Animal genetic resources in China - sheep and goats. China Agriculture Press, Beijing.
|
Ebert, P., Audano, P.A., Zhu, Q., Rodriguez-Martin, B., Porubsky, D., Bonder, M.J., Sulovari, A., Ebler, J., Zhou, W., Serra Mari, R., et al., 2021. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372.
|
Eggertsson, H.P., Jonsson, H., Kristmundsdottir, S., Hjartarson, E., Kehr, B., Masson, G., Zink, F., Hjorleifsson, K.E., Jonasdottir, A., Jonasdottir, A., et al., 2017. Graphtyper enables population-scale genotyping using pangenome graphs. Nat. Genet. 49, 1654-1660.
|
Eissmann, M., Schwamb, B., Melzer, I.M., Moser, J., Siele, D., Kohl, U., Rieker, R.J., Wachter, D.L., Agaimy, A., Herpel, E., et al., 2013. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes. PLoS One 8, e64873.
|
Fan, W., Shao, K.,Luo, M., 2024. Structural view of cryo-electron microscopy-determined ATP-binding cassette transporters in human multidrug resistance. Biomolecules 14, 231.
|
Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.
|
Gan, B., Chen, S.Z., Liu, H., Min, J.R.,Liu, K., 2019. Structure and function of eTudor domain containing TDRD proteins. Crit. Rev. Biochem. Mol. Biol. 54, 119-132.
|
Gebreselase, H.B., Nigussie, H., Wang, C.,Luo, C., 2024. Genetic diversity, population structure and selection signature in Begait goats revealed by whole-genome sequencing. Animals (Basel) 14.
|
Han, B., Tian, D., Li, X., Liu, S., Tian, F., Liu, D., Wang, S.,Zhao, K., 2024. Multiomics analyses provide new insight into genetic variation of reproductive adaptability in Tibetan sheep. Mol. Biol. Evol. 41.
|
Handakas, E., Xu, Y., Segal, A.B., Huerta, M.C., Bowman, K., Howe, L.D., Sassi, F.,Robinson, O., 2022. Molecular mediators of the association between child obesity and mental health. Front. Genet. 13, 947591.
|
He, X., Zhou, Z., Pu, Y., Chen, X., Ma, Y.,Jiang, L., 2016. Mapping the four-horned locus and testing the polled locus in three Chinese sheep breeds. Anim. Genet. 47, 623-627.
|
Hu, X.J., Yang, J., Xie, X.L., Lv, F.H., Cao, Y.H., Li, W.R., Liu, M.J., Wang, Y.T., Li, J.Q., Liu, Y.G., et al., 2019. The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan plateau. Mol. Biol. Evol. 36, 283-303.
|
Hu, Z.-L., Park, C.A.,Reecy, J.M., 2021. Bringing the Animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 50, D956-D961.
|
Huang, X.L., Qu, R.M., Ouyang, J., Zhong, S.Z.,Dai, J.X., 2020. An overview of the cytoskeleton-associated role of PDLIM5. Front. Physiol. 11, 975.
|
Huse, M., Chen, Y.G., Massague, J.,Kuriyan, J., 1999. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell 96, 425-436.
|
Jiang, Y., Xie, M., Chen, W.B., Talbot, R., Maddox, J.F., Faraut, T., Wu, C.H., Muzny, D.M., Li, Y.X., Zhang, W.G., et al., 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 1168-1173.
|
Jin, M., Wang, H., Liu, G., Lu, J., Yuan, Z., Li, T., Liu, E., Lu, Z., Du, L.,Wei, C., 2024. Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation. Genet., Sel., Evol. 56, 26.
|
Johnston, S.E., Gratten, J., Berenos, C., Pilkington, J.G., Clutton-Brock, T.H., Pemberton, J.M.,Slate, J., 2013. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93-95.
|
Johnston, S.E., McEwan, J.C., Pickering, N.K., Kijas, J.W., Beraldi, D., Pilkington, J.G., Pemberton, J.M.,Slate, J., 2011. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 20, 2555-2566.
|
Kamaliyan, Z., Pouriamanesh, S., Soosanabadi, M., Gholami, M.,Mirfakhraie, R., 2018. Investigation of piwi-interacting RNA pathway genes role in idiopathic non-obstructive azoospermia. Sci. Rep. 8, 142.
|
Karlsson, M., Zhang, C., Mear, L.R., Zhong, W., Digre, A., Katona, B., Sjostedt, E., Butler, L., Odeberg, J., Dusart, P., et al., 2021. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169.
|
Kijas, J.W., Lenstra, J.A., Hayes, B., Boitard, S., Porto Neto, L.R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., Gietzen, K., et al., 2012. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10, e1001258.
|
Kim, J., Lee, T., Kim, T.-H., Lee, K.-T.,Kim, H., 2012. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2. BMC Genomics 13, 711.
|
Kronenberg, Z.N., Osborne, E.J., Cone, K.R., Kennedy, B.J., Domyan, E.T., Shapiro, M.D., Elde, N.C.,Yandell, M., 2015. Wham: identifying structural variants of biological consequence. PLoS Comput. Biol. 11, e1004572.
|
Letunic, I.,Bork, P., 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293-W296.
|
Li, H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572-4574.
|
Li, H.,Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
|
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,Proc, G.P.D., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
|
Li, M., Xia, H., Chen, D., Ji, D., Kenji, T., Li, R., Liao, X., Mao, Y., Sun, W., Geng, R.,Yang, Z., 2018. Genetic differentiation and phylogeny of 27 sheep populations based on structural gene loci. Mol. Cell Probes 37, 55-59.
|
Li, R., Gong, M., Zhang, X., Wang, F., Liu, Z., Zhang, L., Yang, Q., Xu, Y., Xu, M., Zhang, H., et al., 2023. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res. 33, 463-477.
|
Li, X., Yang, J., Shen, M., Xie, X.L., Liu, G.J., Xu, Y.X., Lv, F.H., Yang, H., Yang, Y.L., Liu, C.B., et al., 2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 11, 2815.
|
Li, Y.L.,Liu, J.X., 2018. STRUCTURESELECTOR: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176-177.
|
Liu, T., Guo, W.R., Zhang, T.W., Zhang, Y.N., Yang, L., Xie, J.K., Kang, L.T., Wang, W.H., Sun, L.N., Duan, Y.,Su, R.N., 2022. Analysis of differences between different sheep breeds based on whole-genome resequencing technology. PREPRINT (Version 1).
|
Liu, Z., Ji, Z., Wang, G., Chao, T., Hou, L.,Wang, J., 2016. Genome-wide analysis reveals signatures of selection for important traits in domestic sheep from different ecoregions. BMC Genomics 17, 863.
|
Luhken, G., Krebs, S., Rothammer, S., Kupper, J., Mioc, B., Russ, I.,Medugorac, I., 2016. The 1.78-kb insertion in the 3′-untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status. Genet., Sel., Evol. 48, 78.
|
Lv, F.H., Peng, W.F., Yang, J., Zhao, Y.X., Li, W.R., Liu, M.J., Ma, Y.H., Zhao, Q.J., Yang, G.L., Wang, F., et al., 2015. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Mol. Biol. Evol. 32, 2515-2533.
|
Lv, X., Chen, W., Wang, S., Cao, X., Yuan, Z., Getachew, T., Mwacharo, J.M., Haile, A.,Sun, W., 2023. Whole-genome resequencing of Dorper and Hu sheep to reveal selection signatures associated with important traits. Anim. Biotechnol. 34, 3016-3026.
|
Maclean, C.A., Hong, N.P.C.,Prendergast, J.G.D., 2015. Hapbin: an efficient program for performing haplotype-based scans for positive selection in large genomic datasets. Mol. Biol. Evol. 32, 3027-3029.
|
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M.,DePristo, M.A., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
|
Members, C.-N.,Partners, 2021. Database resources of the National Genomics Data Center, china national center for bioinformation in 2022. Nucleic Acids Res. 50, D27-D38.
|
Mulsant, P., Lecerf, F., Fabre, S., Schibler, L., Monget, P., Lanneluc, I., Pisselet, C., Riquet, J., Monniaux, D., Callebaut, I., et al., 2001. Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc. Natl. Acad. Sci. U. S. A. 98, 5104-5109.
|
Niu, L.L., Li, H.B., Ma, Y.H.,Du, L.X., 2012. Genetic variability and individual assignment of Chinese indigenous sheep populations (Ovis aries) using microsatellites. Anim. Genet. 43, 108-111.
|
Pan, Z.Y., Li, S.D., Liu, Q.Y., Wang, Z., Zhou, Z.K., Di, R., Miao, B.P., Hu, W.P., Wang, X.Y., Hu, X.X., et al., 2018. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience 7, giy019.
|
Pedersen, B.S., Layer, R.,Quinlan, A.R. 2020. Smoove: structural-variant calling and genotyping with existing tools.
|
Pickrell, J.K.,Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967.
|
Piper, L.R.,Bindon, B.M., 1983. The Booroola Merino and the performance of medium non-Peppin crosses at Armidale. Wool Technol. Sheep Breed. 31, 14-&.
|
Piper, L.R., Bindon, B.M.,Davis, G.H. 1985. The single gene inheritance of the high litter size of the Booroola Merino, Genetics of Reproduction in Sheep, pp. 115-125.
|
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J.,Sham, P.C., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
|
Quinlan, A.R.,Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.
|
Rausch, T., Zichner, T., Schlattl, A., Stutz, A.M., Benes, V.,Korbel, J.O., 2012. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333-i339.
|
Robinson, D.R., Kalyana-Sundaram, S., Wu, Y.M., Shankar, S., Cao, X., Ateeq, B., Asangani, I.A., Iyer, M., Maher, C.A., Grasso, C.S., et al., 2011. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat. Med. 17, 1646-1651.
|
Robinson, J.T., Thorvaldsdottir, H., Turner, D.,Mesirov, J.P., 2023. Igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 39.
|
Rumpf, M., Pautz, S., Drebes, B., Herberg, F.W.,Muller, H.-A.J., 2023. Microtubule-associated serine/threonine (MAST) kinases in development and disease. Int. J. Mol. Sci. 24, 11913.
|
Schiffels, S.,Wang, K., 2020. MSMC and MSMC2: the multiple sequentially markovian coalescent. Methods Mol. Biol. 2090, 147-166.
|
Selionova, M., Aibazov, M., Mamontova, T., Malorodov, V., Sermyagin, A., Zinovyeva, N.,Easa, A.A., 2022. Genome-wide association study of live body weight and body conformation traits in young Karachai goats. Small Ruminant Res. 216, 106836.
|
Singh, R.V., Sivakumar, A., Sivashankar, S., Das, G., Walkden-Brown, S., Werf, J.V.D., Nimbkar, C.,Gupta, V., 2009. Evaluation of the Booroola (FecB) gene in Muzaffarnagari sheep. ACIAR Proc. 133, 223-224.
|
Smit, A., Hubley, R.,Green, P. 2013. RepeatMasker.
|
Souza, C.J.H., MacDougall, C., Campbell, B.K., McNeilly, A.S.,Baird, D.T., 2001. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 169, R1-R6.
|
Sun, W., Chang, H., Ji, D., Liao, X., Du, L., Lu, S.,Kenji, T., 2007. Analysis on genetic diversity and isolation mechanism by distance of different ecological type sheep breeds in Mongolia sheep group. J. Genet. Genomics 34, 1001-1009.
|
Terhorst, J., Kamm, J.A.,Song, Y.S., 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303-309.
|
Wang, K., Li, M.Y.,Hakonarson, H., 2010a. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164.
|
Wang, W., Zhang, X., Zhou, X., Zhang, Y., La, Y., Zhang, Y., Li, C., Zhao, Y., Li, F., Liu, B.,Jiang, Z., 2019a. Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep. Front. Genet. 10, 300.
|
Wang, X., Fredericksen, Z.S., Vierkant, R.A., Kosel, M.L., Pankratz, V.S., Cerhan, J.R., Justenhoven, C., Brauch, H., Consortium, G., Olson, J.E.,Couch, F.J., 2010b. Association of genetic variation in mitotic kinases with breast cancer risk. Breast Cancer Res. Treat. 119, 453-462.
|
Wang, Y., Zhang, C., Wang, N., Li, Z., Heller, R., Liu, R., Zhao, Y., Han, J., Pan, X., Zheng, Z., et al., 2019b. Genetic basis of ruminant headgear and rapid antler regeneration. Science 364.
|
Wei, C., Wang, H., Liu, G., Zhao, F., Kijas, J.W., Ma, Y., Lu, J., Zhang, L., Cao, J., Wu, M., et al., 2016. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 6, 26770.
|
Wei, C.H., Wang, H.H., Liu, G., Wu, M.M., Cao, J.X.V., Liu, Z., Liu, R.Z., Zhao, F.P., Zhang, L., Lu, J., et al., 2015. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics 16, 194.
|
Wiedemar, N.,Drogemuller, C., 2015. A 1.8-kb insertion in the 3'-UTR of RXFP2 is associated with polledness in sheep. Anim. Genet. 46, 457-461.
|
Wilson, T., Wu, X.Y., Juengel, J.L., Ross, I.K., Lumsden, J.M., Lord, E.A., Dodds, K.G., Walling, G.A., McEwan, J.C., O'Connell, A.R., et al., 2001. Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225-1235.
|
Yang, J., Li, W.R., Lv, F.H., He, S.G., Tian, S.L., Peng, W.F., Sun, Y.W., Zhao, Y.X., Tu, X.L., Zhang, M., et al., 2016. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 33, 2576-2592.
|
Yang, B.G., Yuan, Y., Zhou, D.K., Ma, Y.H., Mahrous, K.F., Wang, S.Z., He, Y.M., Duan, X.H., Zhang, W.Y.,E, G.X., 2021. Genome-wide selection signal analysis of Australian Boer goat reveals artificial selection imprinting on candidate genes related to muscle development. Anim. Genet. 52, 550-555.
|
Yuan, Z., Liu, E., Liu, Z., Kijas, J.W., Zhu, C., Hu, S., Ma, X., Zhang, L., Du, L., Wang, H.,Wei, C., 2017. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 48, 55-66.
|
Zhang, C., Dong, S.S., Xu, J.Y., He, W.M.,Yang, T.L., 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788.
|
Zhao, F., Xie, R., Fang, L., Xiang, R., Yuan, Z., Liu, Y.,Wang, L., 2024a. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol. Appl. 17, e13697.
|
Zhao, L., Yuan, L., Li, F., Zhang, X., Tian, H., Ma, Z., Zhang, D., Zhang, Y., Zhao, Y., Huang, K., et al., 2024b. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits. J. Genet. Genomics 51, 866-876.
|
Zhao, Y., Zhang, X.X., Li, F.D., Zhang, D.Y., Zhang, Y.K., Li, X.L., Song, Q.Z., Zhou, B.B., Zhao, L.M., Wang, J.H., et al., 2022. Whole genome sequencing analysis to identify candidate genes associated with the rib eye muscle area in Hu sheep. Front. Genet. 13, 824742.
|
Zhao, Y.X., Yang, J., Lv, F.H., Hu, X.J., Xie, X.L., Zhang, M., Li, W.R., Liu, M.J., Wang, Y.T., Li, J.Q., et al., 2017. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in east Asia. Mol. Biol. Evol. 34, 2380-2395.
|
Zhong, T., Hou, D., Zhao, Q., Zhan, S., Wang, L., Li, L., Zhang, H., Zhao, W., Yang, S.,Niu, L., 2024. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 25, 480.
|
Zhou, X.,Stephens, M., 2012. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821-824.
|
Zhu, K.Z., 1973. A preliminary study on climate change in China in the past five thousand years. Sci. China 2, 15-38.
|
Zhu, M., Yang, Y., Yang, H., Zhao, Z., Zhang, H., Blair, H.T., Zheng, W., Wang, M., Fang, C., Yu, Q., et al., 2023. Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits. BMC Genomics 24, 392.
|