Abbai, R., Golan, G., Longin, C.F.H., Schnurbusch, T., 2024. Grain yield trade-offs in spike-branching wheat can be mitigated by elite alleles affecting sink capacity and post-anthesis source activity. J. Exp. Bot. 75, 88-102.
|
Agata, A., Ashikari, M., Sato, Y., Kitano, H., Hobo, T., 2023. Designing rice panicle architecture via developmental regulatory genes. Breed Sci. 73, 86-94.
|
Aguilar-Martinez, J.A., Poza-Carrion, C., Cubas, P., 2007. Arabidopsis acts as an integrator of branching signals within axillary buds. Plant Cell 19, 458-472.
|
Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., Al-Babili, S., 2012. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348-1351.
|
Arite, T., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., Kyozuka, J., 2007. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029.
|
Awan, M.J.A., Amin, I., Rasheed, A., Saeed, N.A., Mansoor, S., 2024. Knockout mutation in TaD27 enhances number of productive tillers in hexaploid wheat. Front. Genome Ed. 6, 1455761.
|
Bai, J., Guo, H., Xiong, H., Xie, Y., Gu, J., Zhao, L., Zhao, S., Ding, Y., Liu, L., 2024. Strigolactone and abscisic acid synthesis and signaling pathways are enhanced in the wheat oligo-tillering mutant ot1. Mol. Breed. 44, 12.
|
Bai, X., Huang, Y., Hu, Y., Liu, H., Zhang, B., Smaczniak, C., Hu, G., Han, Z., Xing, Y., 2017. Duplication of an upstream silencer of FZP increases grain yield in rice. Nat. Plants 3, 885-893.
|
Bai, X., Huang, Y., Mao, D., Wen, M., Zhang, L., Xing, Y., 2016. Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice. Sci. Rep. 6, 19022.
|
Bai, M.Y., Zhang, L.Y., Gampala, S.S., Zhu, S.W., Song, W.Y., Chong, K., Wang, Z.Y., 2007. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. U. S. A. 104, 13839-13844.
|
Boden, S.A., Cavanagh, C., Cullis, B.R., Ramm, K., Greenwood, J., Jean Finnegan, E., Trevaskis, B., Swain, S.M., 2015. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants 1, 14016.
|
Braun, N., de Saint Germain, A., Pillot, J.P., Boutet-Mercey, S., Dalmais, M., Antoniadi, I., Li, X., Maia-Grondard, A., Le Signor, C., Bouteiller, N., et al., 2012. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching. Plant Physiol. 158, 225-238.
|
Brun, G., Braem, L., Thoiron, S., Gevaert, K., Goormachtig, S., Delavault, P., 2018. Seed germination in parasitic plants: what insights can we expect from strigolactone research? J. Exp. Bot. 69, 2265-2280.
|
Burgess, A.J., Cardoso, A.A., 2023. Throwing shade: Limitations to photosynthesis at high planting densities and how to overcome them. Plant Physiol. 191, 825-827.
|
Cai, T., Meng, X., Liu, X., Liu, T., Wang, H., Jia, Z., Yang, D., Ren, X., 2018. Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Front. Plant Sci. 9, 1886.
|
Cao, J., Liu, K., Song, W., Zhang, J., Yao, Y., Xin, M., Hu, Z., Peng, H., Ni, Z., Sun, Q., et al., 2021. Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta 253, 44.
|
Chen, H., Zhang, X., Xu, S., Song, C., Mao, H., 2023. TaSPL17s act redundantly with TaSPL14s to control spike development and their elite haplotypes may improve wheat grain yield. Front. Plant Sci. 14, 1229827.
|
Chen, L., Zhao, Y., Xu, S., Zhang, Z., Xu, Y., Zhang, J., Chong, K., 2018. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol. 218, 219-231.
|
Chen, T., Zhang, L., Zhang, Y., Gao, W., Zhang, P., Guo, L., Yang, D., 2024. Genome-wide identification of the endonuclease family genes implicates potential roles of TaENDO23 in drought-stressed response and grain development in wheat. BMC Genomics 25, 919.
|
Cardoso, C., Zhang, Y.X., Jamil, M., Hepworth, J., Charnikhova, T., Dimkpa, S.O.N., Meharg, C., Wright, M.H., Liu, J.W., Meng, X.B., et al., 2014. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc. Natl. Acad. Sci. U. S. A. 111, 6528-6528.
|
Chen, Y., Song, W., Xie, X., Wang, Z., Guan, P., Peng, H., Jiao, Y., Ni, Z., Sun, Q., Guo, W., 2020. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae Tribe as a pilot practice in the plant pangenomic era. Mol. Plant 13, 1694-1708.
|
Chun, Y., Kumar, A., Li, X., 2022. Genetic and molecular pathways controlling rice inflorescence architecture. Front. Plant Sci. 13, 1010138.
|
Debernardi, J.M., Greenwood, J.R., Jean Finnegan, E., Jernstedt, J., Dubcovsky, J., 2020. APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. Plant J. 101, 171-187.
|
Deshpande, G.M., Ramakrishna, K., Chongloi, G.L., Vijayraghavan, U., 2015. Functions for rice RFL in vegetative axillary meristem specification and outgrowth. J. Exp. Bot. 66, 2773-2784.
|
Deveshwar, P., Prusty, A., Sharma, S., Tyagi, A.K., 2020. Phytohormone-mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice. Front. Genet. 11, 586462.
|
Dixon, L.E., Farre, A., Finnegan, E.J., Orford, S., Griffiths, S., Boden, S.A., 2018a. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1. Plant Cell Environ. 41, 1715-1725.
|
Dixon, L.E., Greenwood, J.R., Bencivenga, S., Zhang, P., Cockram, J., Mellers, G., Ramm, K., Cavanagh, C., Swain, S.M., Boden, S.A., 2018b. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). Plant Cell 30, 563-581.
|
Dong, C., Zhang, L., Zhang, Q., Yang, Y., Li, D., Xie, Z., Cui, G., Chen, Y., Wu, L., Li, Z., et al., 2023. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat. Commun. 14, 836.
|
Du, D., Zhang, D., Yuan, J., Feng, M., Li, Z., Wang, Z., Zhang, Z., Li, X., Ke, W., Li, R., et al., 2021. FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytol. 231, 814-833.
|
Du, H., Huang, F., Wu, N., Li, X.H., Hu, H.H., Xiong, L.H., 2018. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol. Plant 11, 584-597.
|
Du, Y., Wu, B., Xing, Y., Zhang, Z., 2022. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J. Adv. Res. 41, 179-190.
|
Duan, Wang, Y.H., Li, X.H., Lin, Q.B., Zhang, T., Wang, Y.P., Zhou, C.L., Zhang, H., Jiang, L., Wang, J.L., et al., 2019a. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. Plant Cell 31, 1026-1042.
|
Duan, Yu, H., Yuan, K., Liao, Z., Meng, X., Jing, Y., Liu, G., Chu, J., Li, J., 2019b. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc. Natl. Acad. Sci. U. S. A. 116, 14319-14324.
|
Dun, E.A., de Saint Germain, A., Rameau, C., Beveridge, C.A., 2012. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol. 158, 487-498.
|
Fang, Z., Bai, G., Huang, W., Wang, Z., Wang, X., Zhang, M., 2017. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front. Plant Sci. 8, 1338.
|
Fang, Z., Ji, Y., Hu, J., Guo, R., Sun, S., Wang, X., 2020. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 Complex to Determine FC1 expression in rice tillering. Mol. Plant 13, 586-597.
|
Ferrero-Serrano, A., Cantos, C., Assmann, S.M., 2019. The role of dwarfing traits in historical and modern agriculture with a focus on rice. Cold Spring Harb. Perspect. Biol. 11.
|
Gao, Wang, N., Wang, X.L., Zhang, X.S., 2019a. Architecture of wheat inflorescence: insights from rice. Trends Plant Sci. 24, 802-809.
|
Gao, Wang, W.G., Wang, Y.H., Liang, Y., 2019b. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol. Breed. 39.
|
Gao, Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., Wang, D., Ruan, B., Liu, C., Jiang, H., et al., 2019c. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 10, 5207.
|
Guo, S.Y., Xu, Y.Y., Liu, H.H., Mao, Z.W., Zhang, C., Ma, Y., Zhang, Q.R., Meng, Z., Chong, K., 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat. Commun. 4.
|
Gupta, A., Hua, L., Zhang, Z., Yang, B., Li, W., 2023. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol. J. 21, 536-548.
|
He, G., Zhang, Y., Liu, P., Jing, Y., Zhang, L., Zhu, Y., Kong, X., Zhao, H., Zhou, Y., Sun, J., 2021. The transcription factor TaLAX1 interacts with Q to antagonistically regulate grain threshability and spike morphogenesis in bread wheat. New Phytol. 230, 988-1002.
|
Hou, M., Luo, F., Wu, D., Zhang, X., Lou, M., Shen, D., Yan, M., Mao, C., Fan, X., Xu, G., et al., 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytol. 229, 935-949.
|
Hu, B., Wang, W., Ou, S.J., Tang, J.Y., Li, H., Che, R.H., Zhang, Z.H., Chai, X.Y., Wang, H.R., Wang, Y.Q., et al., 2015. Variation NRT1.1B in contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47, 834-+.
|
Hu, J., Zhang, B., Peng, D., Yu, R., Liu, Y., Xiao, C., Li, C., Dong, T., Fang, M., Ye, H., et al., 2022. Estimation of wheat tiller density using remote sensing data and machine learning methods. Front. Plant Sci. 13, 1075856.
|
Hu, Q., Liu, H., He, Y., Hao, Y., Yan, J., Liu, S., Huang, X., Yan, Z., Zhang, D., Ban, X., et al., 2024. Regulatory mechanisms of strigolactone perception in rice. Cell.
|
Huang, Bai, G., Wang, J., Zhu, W., Zeng, Q., Lu, K., Sun, S., Fang, Z., 2018a. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front. Plant Sci. 9, 300.
|
Huang, Zhao, S., Fu, Y., Sun, H., Ma, X., Tan, L., Liu, F., Sun, X., Sun, H., Gu, P., et al., 2018b. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication. Plant J. 96, 716-733.
|
Huang, L., Hua, K., Xu, R., Zeng, D., Wang, R., Dong, G., Zhang, G., Lu, X., Fang, N., Wang, D., et al., 2021. The LARGE2-APO1/APO2 regulatory module controls panicle size and grain number in rice. Plant Cell 33, 1212-1228.
|
Huang, P., Zhao, J., Hong, J., Zhu, B., Xia, S., Zhu, E., Han, P., Zhang, K., 2023. Cytokinins regulate rice lamina joint development and leaf angle. Plant Physiol. 191, 56-69.
|
Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., Fu, X., 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494-497.
|
Huang, Y., Bai, X., Luo, M., Xing, Y., 2019. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. J. Integr. Plant Biol. 61, 987-999.
|
Huo, X., Wu, S., Zhu, Z., Liu, F., Fu, Y., Cai, H., Sun, X., Gu, P., Xie, D., Tan, L., et al., 2017. NOG1 increases grain production in rice. Nat. Commun. 8, 1497.
|
Hyles, J., Vautrin, S., Pettolino, F., MacMillan, C., Stachurski, Z., Breen, J., Berges, H., Wicker, T., Spielmeyer, W., 2017. Repeat-length variation in a wheat cellulose synthase-like gene is associated with altered tiller number and stem cell wall composition. J. Exp. Bot. 68, 1519-1529.
|
Ikeda, K., Ito, M., Nagasawa, N., Kyozuka, J., Nagato, Y., 2007. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 51, 1030-1040.
|
Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I., Kyozuka, J., 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79-86.
|
Jian, C., Pan, Y., Liu, S., Guo, M., Huang, Y., Cao, L., Zhang, W., Yan, L., Zhang, X., Hou, J., et al., 2024. The TaGW2-TaSPL14 module regulates the trade-off between tiller number and grain weight in wheat. J. Integr. Plant Biol.
|
Jiang, D.J., Hao, X.H., Zhang, J., Tang, H., Wang, F., 2021. Reducing expression of TaOTUB1s decreases tiller number in wheat. Plant Signal. Behav. 16, 2018217.
|
Jiang, L., Liu, X., Xiong, G.S., Liu, H.H., Chen, F.L., Wang, L., Meng, X.B., Liu, G.F., Yu, H., Yuan, Y.D., et al., 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401-405.
|
Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544.
|
Jing, Y., Shen, C., Li, W., Peng, L., Hu, M., Zhang, Y., Zhao, X., Teng, W., Tong, Y., He, X., 2024. TaLBD41 interacts with TaNAC2 to regulate nitrogen uptake and metabolism in response to nitrate availability. New Phytol. 242, 641-657.
|
Kameoka, H., Dun, E.A., Lopez-Obando, M., Brewer, P.B., de Saint Germain, A., Rameau, C., Beveridge, C.A., Kyozuka, J., 2016. Phloem transport of the receptor DWARF14 protein is required for full function of strigolactones. Plant Physiol. 172, 1844-1852.
|
Kebrom, T.H., Chandler, P.M., Swain, S.M., King, R.W., Richards, R.A., Spielmeyer, W., 2012. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol. 160, 308-318.
|
Komatsu, Chujo, A., Nagato, Y., Shimamoto, K., Kyozuka, J., 2003a. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130, 3841-3850.
|
Komatsu, Maekawa, M., Ujiie, S., Satake, Y., Furutani, I., Okamoto, H., Shimamoto, K., Kyozuka, J., 2003b. LAX and SPA: major regulators of shoot branching in rice. Proc. Natl. Acad. Sci. U. S. A. 100, 11765-11770.
|
Kong, X., Wang, F., Geng, S., Guan, J., Tao, S., Jia, M., Sun, G., Wang, Z., Wang, K., Ye, X., et al., 2022. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol. J. 20, 75-88.
|
Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H., Kyozuka, J., 2007. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652-655.
|
Kuzay, S., Lin, H., Li, C., Chen, S., Woods, D.P., Zhang, J., Lan, T., von Korff, M., Dubcovsky, J., 2022. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genet. 18, e1009747.
|
Lan, S., Zhang, Y., Gao, T., Tong, F., Tian, Z., Zhang, H., Li, M., Mustafa, N.S., 2024. UAV remote sensing monitoring of winter wheat tiller number based on vegetation pixel extraction and mixed-features selection. Int. J. Appl. Earth Obs. Geoinf. 131.
|
Lei, K., Tan, Q., Zhu, L., Xu, L., Yang, S., Hu, J., Gao, L., Hou, P., Shao, Y., Jiang, D., et al., 2022. Low red/far-red ratio can induce cytokinin degradation resulting in the inhibition of tillering in wheat (Triticum aestivum L.). Front. Plant Sci. 13, 971003.
|
Li, Li, L., Zhao, M., Guo, L., Guo, X., Zhao, D., Batool, A., Dong, B., Xu, H., Cui, S., et al., 2021a. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol. J. 19, 1141-1154.
|
Li, Zhang, H.L., Li, J.J., Zhang, Z.Y., Li, Z.C., 2021b. Genetic control of panicle architecture in rice. Crop Journal 9, 590-597.
|
Li, C., Lin, H., Chen, A., Lau, M., Jernstedt, J., Dubcovsky, J., 2019a. Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 146.
|
Li, M., Tang, D., Wang, K., Wu, X., Lu, L., Yu, H., Gu, M., Yan, C., Cheng, Z., 2011. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnol. J. 9, 1002-1013.
|
Li, S., Qian, Q., Fu, Z., Zeng, D., Meng, X., Kyozuka, J., Maekawa, M., Zhu, X., Zhang, J., Li, J., et al., 2009. Short panicle 1 encodes a putative PTR family transporter and determines rice panicle size. Plant J. 58, 592-605.
|
Li, S., Zhao, B., Yuan, D., Duan, M., Qian, Q., Tang, L., Wang, B., Liu, X., Zhang, J., Wang, J., et al., 2013. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. U. S. A. 110, 3167-3172.
|
Li, T., Nagarajan, R., Liu, S., Luzuriaga, J.C., Zhai, W., Cao, S., Jia, H., Carver, B.F., Yan, L., 2024. The E3 ligase TaE3V-B1 ubiquitinates proteins encoded by the vernalization gene TaVRN1 and regulates developmental processes in wheat. Plant Physiol.
|
Li, X., Qian, Q., Fu, Z., Wang, Y., Xiong, G., Zeng, D., Wang, X., Liu, X., Teng, S., Hiroshi, F., et al., 2003. Control of tillering in rice. Nature 422, 618-621.
|
Li, Y., He, Y., Liu, Z., Qin, T., Wang, L., Chen, Z., Zhang, B., Zhang, H., Li, H., Liu, L., et al., 2022. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. Plant J. 111, 1167-1182.
|
Li, Y., Ouyang, J., Wang, Y.Y., Hu, R., Xia, K., Duan, J., Wang, Y., Tsay, Y.F., Zhang, M., 2015. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci. Rep. 5, 9635.
|
Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., et al., 2019b. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol. 20, 139.
|
Liao, Z., Yu, H., Duan, J., Yuan, K., Yu, C., Meng, X., Kou, L., Chen, M., Jing, Y., Liu, G., et al., 2019. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat. Commun. 10, 2738.
|
Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J., et al., 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512-1525.
|
Lin, Q., Wang, D., Dong, H., Gu, S., Cheng, Z., Gong, J., Qin, R., Jiang, L., Li, G., Wang, J.L., et al., 2012. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat. Commun. 3, 752.
|
Lin, Q., Zhang, Z., Wu, F., Feng, M., Sun, Y., Chen, W., Cheng, Z., Zhang, X., Ren, Y., Lei, C., et al., 2020. The APC/C(TE) E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. Plant Cell 32, 1973-1987.
|
Lin, X., Xu, Y., Wang, D., Yang, Y., Zhang, X., Bie, X., Gui, L., Chen, Z., Ding, Y., Mao, L., et al., 2024. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. Mol. Plant 17, 438-459.
|
Liu, H., Wang, K., Tang, H., Gong, Q., Du, L., Pei, X., Ye, X., 2020a. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J. Genet. Genomics 47, 563-575.
|
Liu, J., Cheng, X., Liu, P., Sun, J., 2017. miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol. 174, 1931-1948.
|
Liu, J., Shi, X., Chang, Z., Ding, Y., Ding, C., 2022b. Auxin efflux transporters OsPIN1c and OsPIN1d function redundantly in regulating rice (Oryza sativa L.) panicle development. Plant Cell Physiol. 63, 305-316.
|
Liu, P., Yin, B., Liu, X., Gu, L., Guo, J., Yang, M., Zhen, W., 2023a. Optimizing plant spatial competition can change phytohormone content and promote tillering, thereby improving wheat yield. Front. Plant Sci. 14, 1147711.
|
Liu, R., Hou, J., Li, H., Xu, P., Zhang, Z., Zhang, X., 2021a. Association of TaD14-4D, a Gene Involved in Strigolactone Signaling, with Yield Contributing Traits in Wheat. Int. J. Mol. Sci. 22.
|
Liu, T., Zhang, X., Zhang, H., Cheng, Z., Liu, J., Zhou, C., Luo, S., Luo, W., Li, S., Xing, X., et al., 2022c. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell 34, 3301-3318.
|
Liu, X., Bie, X.M., Lin, X., Li, M., Wang, H., Zhang, X., Yang, Y., Zhang, C., Zhang, X.S., Xiao, J., 2023b. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants 9, 908-925.
|
Liu, X., Hu, Q.L., Yan, J.J., Sun, K., Liang, Y., Jia, M.R., Meng, X.B., Fang, S., Wang, Y.Q., Jing, Y.H., et al., 2020d. ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol. Plant 13, 1784-1801.
|
Liu, Y.Q., Wang, H.R., Jiang, Z.M., Wang, W., Xu, R.N., Wang, Q.H., Zhang, Z.H., Li, A.F., Liang, Y., Ou, S.J., et al., 2021b. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590.
|
Long, J., Barton, M.K., 2000. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218, 341-353.
|
Lu, Z., Shao, G., Xiong, J., Jiao, Y., Wang, J., Liu, G., Meng, X., Liang, Y., Xiong, G., Wang, Y., et al., 2015. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J. Genet. Genomics 42, 71-78.
|
Lu, Z., Yu, H., Xiong, G., Wang, J., Jiao, Y., Liu, G., Jing, Y., Meng, X., Hu, X., Qian, Q., et al., 2013. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25, 3743-3759.
|
Luo, L., Takahashi, M., Kameoka, H., Qin, R., Shiga, T., Kanno, Y., Seo, M., Ito, M., Xu, G., Kyozuka, J., 2019. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant J. 97, 1006-1021.
|
Luo, X., Yang, Y., Lin, X., Xiao, J., 2023. Deciphering spike architecture formation towards yield improvement in wheat. J. Genet. Genomics 50, 835-845.
|
Mashiguchi, K., Seto, Y., Yamaguchi, S., 2021. Strigolactone biosynthesis, transport and perception. Plant J. 105, 335-350.
|
Milec, Z., Strejckova, B., Safar, J., 2022. Contemplation on wheat vernalization. Front. Plant Sci. 13, 1093792.
|
Minakuchi, K., Kameoka, H., Yasuno, N., Umehara, M., Luo, L., Kobayashi, K., Hanada, A., Ueno, K., Asami, T., Yamaguchi, S., et al., 2010. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 51, 1127-1135.
|
Ming, L., Fu, D., Wu, Z., Zhao, H., Xu, X., Xu, T., Xiong, X., Li, M., Zheng, Y., Li, G., et al., 2023. Transcriptome-wide association analyses reveal the impact of regulatory variants on rice panicle architecture and causal gene regulatory networks. Nat. Commun. 14, 7501.
|
Miura, K., Ikeda, M., Matsubara, A., Song, X.J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., Ashikari, M., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549.
|
Miyashita, Y., Takasugi, T., Ito, Y., 2010. Identification and expression analysis of genes in rice. Plant Sci. 178, 424-428.
|
Mo, T., Wang, T., Sun, Y., Kumar, A., Mkumbwa, H., Fang, J., Zhao, J., Yuan, S., Li, Z., Li, X., 2024. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. Plant Commun., 101073.
|
Nakagawa, M., Shimamoto, K., Kyozuka, J., 2002. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J. 29, 743-750.
|
Nakamura, H., Xue, Y.L., Miyakawa, T., Hou, F., Qin, H.M., Fukui, K., Shi, X., Ito, E., Ito, S., Park, S.H., et al., 2013. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4, 2613.
|
Ookawa, T., Hobo, T., Yano, M., Murata, K., Ando, T., Miura, H., Asano, K., Ochiai, Y., Ikeda, M., Nishitani, R., et al., 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1, 132.
|
Pantazopoulou, C.K., Bongers, F.J., Pierik, R., 2021. Reducing shade avoidance can improve Arabidopsis canopy performance against competitors. Plant Cell Environ. 44, 1130-1141.
|
Paraiso, F., Lin, H., Li, C., Woods, D.P., Lan, T., Tumelty, C., Debernardi, J.M., Joe, A., Dubcovsky, J., 2024. LEAFY and WAPO1 jointly regulate spikelet number per spike and floret development in wheat. Development 151.
|
Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., Lu, Z., 2023. Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Sci. China Life Sci. 66, 819-834.
|
Poursarebani, N., Seidensticker, T., Koppolu, R., Trautewig, C., Gawronski, P., Bini, F., Govind, G., Rutten, T., Sakuma, S., Tagiri, A., et al., 2015. The genetic basis of composite spike form in barley and 'Miracle-Wheat'. Genetics 201, 155-165.
|
Rameau, C., Bertheloot, J., Leduc, N., Andrieu, B., Foucher, F., Sakr, S., 2014. Multiple pathways regulate shoot branching. Front. Plant Sci. 5, 741.
|
Rashid, A., Achary, V.M.M., Abdin, M.Z., Karippadakam, S., Parmar, H., Panditi, V., Prakash, G., Bhatnagar-Mathur, P., Reddy, M.K., 2024. Cytokinin oxidase2-deficient mutants improve panicle and grain architecture through cytokinin accumulation and enhance drought tolerance in indica rice. Plant Cell Rep. 43, 207.
|
Rong, C., Liu, Y., Chang, Z., Liu, Z., Ding, Y., Ding, C., 2022. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 73, 3552-3568.
|
Sakuma, S., Koppolu, R., 2023. Form follows function in Triticeae inflorescences. Breed Sci. 73, 46-56.
|
Santosh Kumar, V.V., Yadav, S.K., Verma, R.K., Shrivastava, S., Ghimire, O., Pushkar, S., Rao, M.V., Senthil Kumar, T., Chinnusamy, V., 2021. The abscisic acid receptor OsPYL6 confers drought tolerance to indica rice through dehydration avoidance and tolerance mechanisms. J. Exp. Bot. 72, 1411-1431.
|
Seto, Y., Yasui, R., Kameoka, H., Tamiru, M., Cao, M.M., Terauchi, R., Sakurada, A., Hirano, R., Kisugi, T., Hanada, A., et al., 2019. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat. Commun. 10.
|
Shabek, N., Ticchiarelli, F., Mao, H., Hinds, T.R., Leyser, O., Zheng, N., 2018. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature 563, 652-656.
|
Shang, Q.S., Wang, Y.P., Tang, H., Sui, N., Zhang, X.S., Wang, F., 2021. Genetic, hormonal, and environmental control of tillering in wheat. Crop Journal 9, 986-991.
|
Shao, A., Ma, W., Zhao, X., Hu, M., He, X., Teng, W., Li, H., Tong, Y., 2017. The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiol. 174, 2274-2288.
|
Shang, X.L., Xie, R.R., Tian, H., Wang, Q.L., Guo, F.Q., 2016. Putative zeatin O-glucosyltransferase OscZOG1 regulates root and shoot development and formation of agronomic traits in rice. J. Integr. Plant Biol. 58, 627-641.
|
Shao, G., Lu, Z., Xiong, J., Wang, B., Jing, Y., Meng, X., Liu, G., Ma, H., Liang, Y., Chen, F., et al., 2019. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol. Plant 12, 1090-1102.
|
Shitsukawa, N., Takagishi, A., Ikari, C., Takumi, S., Murai, K., 2006. WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem. Genes Genet. Syst. 81, 13-20.
|
Sigalas, P.P., Bennett, T., Buchner, P., Thomas, S.G., Jamois, F., Arkoun, M., Yvin, J.C., Bennett, M.J., Hawkesford, M.J., 2024. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. Plant J. 120, 139-158.
|
Song, X.G., Lu, Z.F., Yu, H., Shao, G.N., Xiong, J.S., Meng, X.B., Jing, Y.H., Liu, G.F., Xiong, G.S., Duan, J.B., et al., 2017. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res. 27, 1128-1141.
|
Song, X., Meng, X., Guo, H., Cheng, Q., Jing, Y., Chen, M., Liu, G., Wang, B., Wang, Y., Li, J., et al., 2022. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat. Biotechnol. 40, 1403-1411.
|
Spielmeyer, W., Richards, R.A., 2004. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor. Appl. Genet. 109, 1303-1310.
|
Su, S., Hong, J., Chen, X., Zhang, C., Chen, M., Luo, Z., Chang, S., Bai, S., Liang, W., Liu, Q., et al., 2021. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice. Plant Biotechnol. J. 19, 2304-2318.
|
Sun, W., Xu, X.H., Li, Y., Xie, L., He, Y., Li, W., Lu, X., Sun, H., Xie, X., 2020. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 226, 823-837.
|
Sun, F., Zhang, W., Xiong, G., Yan, M., Qian, Q., Li, J., Wang, Y., 2010. Identification and functional analysis of the MOC1 interacting protein 1. J. Genet. Genomics 37, 69-77.
|
Sun, J., Bie, X.M., Chu, X.L., Wang, N., Zhang, X.S., Gao, X.Q., 2023. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. Front. Plant Sci. 14, 1142779.
|
Suzaki, T., Sato, M., Ashikari, M., Miyoshi, M., Nagato, Y., Hirano, H.Y., 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131, 5649-5657.
|
Tabuchi, H., Zhang, Y., Hattori, S., Omae, M., Shimizu-Sato, S., Oikawa, T., Qian, Q., Nishimura, M., Kitano, H., Xie, H., et al., 2011. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276-3287.
|
Takai, T., 2024. Potential of rice tillering for sustainable food production. J. Exp. Bot. 75, 708-720.
|
Takai, T., Taniguchi, Y., Takahashi, M., Nagasaki, H., Yamamoto, E., Hirose, S., Hara, N., Akashi, H., Ito, J., Arai-Sanoh, Y., et al., 2023. MORE PANICLES 3, a natural allele of OsTB1/FC1, impacts rice yield in paddy fields at elevated CO2 levels. Plant J. 114, 729-742.
|
Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M., Matsuoka, M., Ueguchi, C., 2003. The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33, 513-520.
|
Tanaka, W., Ohmori, Y., Ushijima, T., Matsusaka, H., Matsushita, T., Kumamaru, T., Kawano, S., Hirano, H.Y., 2015. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell 27, 1173-1184.
|
Teng, W., He, X., Tong, Y., 2022. Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: a review. Plants (Basel) 11.
|
Tong, H., Jin, Y., Liu, W., Li, F., Fang, J., Yin, Y., Qian, Q., Zhu, L., Chu, C., 2009. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J. 58, 803-816.
|
Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., Chu, C., 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24, 2562-2577.
|
Wang, Bao, J., Zhou, B., Li, M., Li, X., Jin, J., 2021a. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. New Phytol. 229, 1566-1581.
|
Wang, Du, F., Wang, J., Wang, K., Tian, C., Qi, X., Lu, F., Liu, X., Ye, X., Jiao, Y., 2022a. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat. Plants 8, 930-939.
|
Wang, Han, T., Song, Q., Ye, W., Song, X., Chu, J., Li, J., Chen, Z.J., 2020a. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell 32, 3124-3138.
|
Wang, Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., Ou, S., Liu, Y., Zhang, Z., Wang, H., et al., 2018a. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in Rice. Plant Cell 30, 638-651.
|
Wang, Lu, K., Nie, H., Zeng, Q., Wu, B., Qian, J., Fang, Z., 2018b. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice (N Y) 11, 12.
|
Wang, Ouyang, Q., Yang, C., Zhang, Z., Hou, D., Liu, H., Xu, H., 2022b. Mutation of OsPIN1b by CRISPR/Cas9 reveals a role for auxin transport in modulating rice architecture and root gravitropism. Int. J. Mol. Sci. 23.
|
Wang, Shang, L., Yu, H., Zeng, L., Hu, J., Ni, S., Rao, Y., Li, S., Chu, J., Meng, X., et al., 2020b. A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol. Plant 13, 923-932.
|
Wang, Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., Hu, J., Wang, R., Wei, C., Li, G., et al., 2021b. The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. Mol. Plant 14, 1012-1023.
|
Wang, Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., Jiao, Y., 2017a. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol. 175, 746-757.
|
Wang, Yu, H., Xiong, G., Lu, Z., Jiao, Y., Meng, X., Liu, G., Chen, X., Wang, Y., Li, J., 2017b. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29, 697-707.
|
Wang, Zhou, L., Shi, H., Chern, M., Yu, H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., et al., 2018c. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026-1028.
|
Wang, D., Zhang, X., Cao, Y., Batool, A., Xu, Y., Qiao, Y., Li, Y., Wang, H., Lin, X., Bie, X., et al., 2024. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. J. Integr. Plant Biol. 66, 1295-1312.
|
Wang, L., Sun, S., Jin, J., Fu, D., Yang, X., Weng, X., Xu, C., Li, X., Xiao, J., Zhang, Q., 2015. Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl. Acad. Sci. U. S. A. 112, 15504-15509.
|
Wang, T., Li, J., Jiang, Y., Zhang, J., Ni, Y., Zhang, P., Yao, Z., Jiao, Z., Li, H., Li, L., et al., 2023. Wheat gibberellin oxidase genes and their functions in regulating tillering. PeerJ 11, e15924.
|
Wang, Y., Li, J., 2006. Genes controlling plant architecture. Curr. Opin. Biotechnol. 17, 123-129.
|
Wang, Y., Li, J., 2011. Branching in rice. Curr. Opin. Plant Biol. 14, 94-99.
|
Wen, R., Zhu, M., Yu, J., Kou, L., Ahmad, S., Wei, X., Jiao, G., Hu, S., Sheng, Z., Zhao, F., et al., 2024. Photosynthesis regulates tillering bud elongation and nitrogen-use efficiency via sugar-induced NGR5 in rice. New Phytol. 243, 1440-1454.
|
Weng, X., Wang, L., Wang, J., Hu, Y., Du, H., Xu, C., Xing, Y., Li, X., Xiao, J., Zhang, Q., 2014. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response. Plant Physiol. 164, 735-747.
|
Wolde, G.M., Schreiber, M., Trautewig, C., Himmelbach, A., Sakuma, S., Mascher, M., Schnurbusch, T., 2021. Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theor. Appl. Genet. 134, 1925-1943.
|
Wu, B., Meng, J., Liu, H., Mao, D., Yin, H., Zhang, Z., Zhou, X., Zhang, B., Sherif, A., Liu, H., et al., 2023. Suppressing a phosphohydrolase of cytokinin nucleotide enhances grain yield in rice. Nat. Genet. 55, 1381-1389.
|
Wu, G., Wilson, L.T., McClung, A.M., 1998. Contribution of rice tillers to dry matter accumulation and yield. Agron. J. 90, 317-323.
|
Wu, H.M., Xie, D.J., Tang, Z.S., Shi, D.Q., Yang, W.C., 2020a. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. Plant Biotechnol. J. 18, 1778-1795.
|
Wu, K., Wang, S., Song, W., Zhang, J., Wang, Y., Liu, Q., Yu, J., Ye, Y., Li, S., Chen, J., et al., 2020b. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367.
|
Xia, T.Y., Chen, H.Q., Dong, S.J., Ma, Z.Y., Ren, H.B., Zhu, X.D., Fang, X.H., Chen, F., 2020. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice. Plant J. 104, 1635-1647.
|
Xu, C., Wang, Y., Yu, Y., Duan, J., Liao, Z., Xiong, G., Meng, X., Liu, G., Qian, Q., Li, J., 2012. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat. Commun. 3, 750.
|
Xu, J., Zha, M., Li, Y., Ding, Y., Chen, L., Ding, C., Wang, S., 2015. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep. 34, 1647-1662.
|
Yang, H., Li, Y., Qiao, Y., Sun, H., Liu, W., Qiao, W., Li, W., Liu, M., Dong, B., 2023. Low light stress promotes new tiller regeneration by changing source-sink relationship and activating expression of expansin genes in wheat. Plant Cell Environ. 46, 1562-1581.
|
Yan, Y.P., Ding, C.Q., Zhang, G.H., Hu, J., Zhu, L., Zeng, D.L., Qian, Q., Ren, D.Y., 2023. Genetic and environmental control of rice tillering. Crop Journal 11, 1287-1302.
|
Yang, J., Cho, L.H., Yoon, J., Yoon, H., Wai, A.H., Hong, W.J., Han, M., Sakakibara, H., Liang, W., Jung, K.H., et al., 2019a. Chromatin interacting factor OsVIL2 increases biomass and rice grain yield. Plant Biotechnol. J. 17, 178-187.
|
Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., et al., 2019b. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 17, 1823-1833.
|
Yao, F.Q., Li, X.H., Wang, H., Song, Y.N., Li, Z.Q., Li, X.G., Gao, X.Q., Zhang, X.S., Bie, X.M., 2021. Down-expression of TaPIN1s increases the tiller number and grain yield in wheat. BMC Plant Biol. 21, 443.
|
Yao, R.F., Ming, Z.H., Yan, L.M., Li, S.H., Wang, F., Ma, S., Yu, C.T., Yang, M., Chen, L., Chen, L.H., et al., 2016. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469-+.
|
Yeh, S.Y., Chen, H.W., Ng, C.Y., Lin, C.Y., Tseng, T.H., Li, W.H., Ku, M.S., 2015. Down-regulation of Cytokinin Oxidase 2 expression increases tiller number and improves rice yield. Rice (N Y) 8, 36.
|
Yi, G., Choi, J.H., Jeong, E.G., Chon, N.S., Jena, K.K., Ku, Y.C., Kim, D.H., Eun, M.Y., Jeon, J.S., Nam, M.H., 2005. Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)", in rice (Oryza sativa L.). Hereditas 142, 92-97.
|
Yin, C.C., Ma, B., Collinge, D.P., Pogson, B.J., He, S.J., Xiong, Q., Duan, K.X., Chen, H., Yang, C., Lu, X., et al., 2015. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway. Plant Cell 27, 1061-1081.
|
Yoon, J., Jeong, H.J., Baek, G., Yang, J., Peng, X., Tun, W., Kim, S.T., An, G., Cho, L.H., 2021. A VIN3-like Protein OsVIL1 is involved in grain yield and biomass in rice. Plants (Basel) 11.
|
Yoshida, A., Ohmori, Y., Kitano, H., Taguchi-Shiobara, F., Hirano, H.Y., 2012. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J. 70, 327-339.
|
Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., Chen, G., Wang, B., Liu, Y., Wu, W., et al., 2021. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnol. J. 19, 167-176.
|
Yuan, R., Miao, Y., Zhang, D., Wang, S., Zhang, H., Wu, M., Ye, M., Zhang, Z., 2024a. The Formation of Rice Tillers and Factors Influencing It. Agronomy 14 (12), 2904.
|
Yuan, Y., Lyu, B., Qi, J., Liu, X., Wang, Y., Delaplace, P., Du, Y., 2024. A novel regulator of wheat tillering LT1 identified by using an upgraded BSA method, uni-BSA. Mol. Breed. 44, 47.
|
Yue, E., Li, C., Li, Y., Liu, Z., Xu, J.H., 2017. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa). Plant Mol. Biol. 94, 469-480.
|
Zha, M., Zhao, Y., Wang, Y., Chen, B., Tan, Z., 2022. Strigolactones and cytokinin interaction in buds in the control of rice tillering. Front. Plant Sci. 13, 837136.
|
Zhang, Meng, W., Liu, D., Pan, D., Yang, Y., Chen, Z., Ma, X., Yin, W., Niu, M., Dong, N., et al., 2024a. Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition. Science 383, eadk8838.
|
Zhang, Zhang, Y., Chen, J., Xu, M., Guan, X., Wu, C., Zhang, S., Qu, H., Chu, J., Xu, Y., et al., 2024b. Sugar transporter modulates nitrogen-determined tillering and yield formation in rice. Nat. Commun. 15, 9233.
|
Zhang, B., Liu, X., Xu, W., Chang, J., Li, A., Mao, X., Zhang, X., Jing, R., 2015. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Sci. Rep. 5, 12211.
|
Zhang, B., Wang, X., Zhao, Z., Wang, R., Huang, X., Zhu, Y., Yuan, L., Wang, Y., Xu, X., Burlingame, A.L., et al., 2016. OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation. Plant Physiol. 170, 1149-1161.
|
Zhang, L., He, G., Li, Y., Yang, Z., Liu, T., Xie, X., Kong, X., Sun, J., 2022. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants. New Phytol. 233, 1414-1425.
|
Zhang, L., Yu, H., Ma, B., Liu, G., Wang, J., Wang, J., Gao, R., Li, J., Liu, J., Xu, J., et al., 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789.
|
Zhang, Q., Xie, J., Zhu, X., Ma, X., Yang, T., Khan, N.U., Zhang, S., Liu, M., Li, L., Liang, Y., et al., 2023. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. Plant Biotechnol. J. 21, 1044-1057.
|
Zhang, Y., van Dijk, A.D., Scaffidi, A., Flematti, G.R., Hofmann, M., Charnikhova, T., Verstappen, F., Hepworth, J., van der Krol, S., Leyser, O., et al., 2014. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 10, 1028-1033.
|
Zhao, X.Y., Wang, H.Q., Shi, W., Zhang, W.W., Zhao, F.J., 2024. The Respiratory Burst Oxidase Homologue OsRBOHE is crucial for root hair formation, drought resistance and tillering in rice. Plant Cell and Environment.
|
Zhao, B., Wu, T.T., Ma, S.S., Jiang, D.J., Bie, X.M., Sui, N., Zhang, X.S., Wang, F., 2020. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol. J. 18, 513-525.
|
Zhou, F., Lin, Q., Zhu, L., Ren, Y., Zhou, K., Shabek, N., Wu, F., Mao, H., Dong, W., Gan, L., et al., 2013. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406-410.
|
Zhu, W., Yang, L., Wu, D., Meng, Q., Deng, X., Huang, G., Zhang, J., Chen, X., Ferrandiz, C., Liang, W., et al., 2022. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. New Phytol. 233, 1682-1700.
|
Zong, J., Wang, L., Zhu, L., Bian, L., Zhang, B., Chen, X., Huang, G., Zhang, X., Fan, J., Cao, L., et al., 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytol. 234, 494-512.
|
Zou, J.H., Zhang, S.Y., Zhang, W.P., Li, G., Chen, Z.X., Zhai, W.X., Zhao, X.F., Pan, X.B., Xie, Q., Zhu, L.H., 2006. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48, 687-696.
|