9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 7
Jul.  2025
Turn off MathJax
Article Contents

In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa

doi: 10.1016/j.jgg.2024.12.012
Funds:

This study was funded by the National Key Research and Development Program of China (2023YFC2506100), the National Natural Science Foundation of China (31971365, 32371509, 32001063, and 82271688), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2019BT02Y276), the Guangdong Basic and Applied Basic Research Foundation (2023A1515010176), the grant from MOE Key Laboratory of Gene Function and Regulation, the Guangzhou Science and Technology Planning Project (2023A04J1952), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ptpy59).

  • Received Date: 2024-12-03
  • Accepted Date: 2024-12-16
  • Rev Recd Date: 2024-12-15
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-24
  • Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy for dominantly inherited ocular disorders.
  • loading
  • Amoasii, L., Hildyard, J.C.W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.R., Massey, C., Shelton, J.M., et al., 2018. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science 362, 86-90.
    Aranko, A.S., Wlodawer, A., Iwai, H., 2014. Nature's recipe for splitting inteins. Protein Eng. Des. Sel. 27, 263-271.
    Athanasiou, D., Aguila, M., Bellingham, J., Li, W., McCulley, C., Reeves, P.J., Cheetham, M.E., 2018. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog. Retin. Eye Res. 62, 1-23.
    Bainbridge, J.W., Mehat, M.S., Sundaram, V., Robbie, S.J., Barker, S.E., Ripamonti, C., Georgiadis, A., Mowat, F.M., Beattie, S.G., Gardner, P.J., et al., 2015. Long-term effect of gene therapy on leber's congenital amaurosis. N. Engl. J. Med. 372, 1887-1897.
    Bak, R.O., Dever, D.P., Reinisch, A., Cruz Hernandez, D., Majeti, R., Porteus, M.H., 2017. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. Elife 6, e27873.
    Bakondi, B., Lv, W., Lu, B., Jones, M.K., Tsai, Y., Kim, K.J., Levy, R., Akhtar, A.A., Breunig, J.J., Svendsen, C.N., et al., 2016. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol. Ther. 24, 556-563.
    Banskota, S., Raguram, A., Suh, S., Du, S.W., Davis, J.R., Choi, E.H., Wang, X., Nielsen, S.C., Newby, G.A., Randolph, P.B., et al., 2022. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250-265.
    Bowden, A.R., Morales-Juarez, D.A., Sczaniecka-Clift, M., Agudo, M.M., Lukashchuk, N., Thomas, J.C., Jackson, S.P., 2020. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. Elife 9, e55325.
    Campochiaro, P.A., Mir, T.A., 2018. The mechanism of cone cell death in retinitis pigmentosa. Prog. Retin. Eye Res. 62, 24-37.
    Cepko, C.L., Vandenberghe, L.H., 2013. Retinal gene therapy coming of age. Hum. Gene Ther. 24, 242-244.
    Chen, Y., Zhi, S., Liu, W., Wen, J., Hu, S., Cao, T., Sun, H., Li, Y., Huang, L., Liu, Y., et al., 2020. Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods 4, 2000309.
    Choudhury, S., Nashine, S., Bhootada, Y., Kunte, M.M., Gorbatyuk, O., Lewin, A.S., Gorbatyuk, M., 2014. Modulation of the rate of retinal degeneration in T17M Rho mice by reprogramming the unfolded protein response. Adv. Exp. Med. Biol. 801, 455-462.
    Cideciyan, A.V., Hood, D.C., Huang, Y., Banin, E., Li, Z.-Y., Stone, E.M., Milam, A.H., Jacobson, S.G., 1998. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc. Natl. Acad. Sci. 95, 7103-7108.
    Cideciyan, A.V., Jacobson, S.G., Beltran, W.A., Sumaroka, A., Swider, M., Iwabe, S., Roman, A.J., Olivares, M.B., Schwartz, S.B., Komaromy, A.M., et al., 2013. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. U. S. A. 110, E517-525.
    Cideciyan, A.V., Swider, M., Schwartz, S.B., Stone, E.M., Jacobson, S.G., 2015. Predicting progression of Abca4-associated retinal degenerations based on longitudinal measurements of the leading disease front. Invest. Ophthalmol. Vis. Sci. 56, 5946-5955.
    Concepcion, F., Chen, J., 2010. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: A mouse model of Q344ter-induced retinal degeneration. PLoS ONE 5, e10904.
    Daiger, S.P., Bowne, S.J., Sullivan, L.S., 2014. Genes and mutations causing autosomal dominant retinitis pigmentosa. Cold Spring Harb. Perspect. Med. 5, a017129.
    Diakatou, M., Manes, G., Bocquet, B., Meunier, I., Kalatzis, V., 2019. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa. Int. J. Mol. Sci. 20, 2542.
    Diner, B.A., Dass, A., Nayak, R., Flinkstrom, Z., Tallo, T., DaSilva, J., Gotta, G., Wang, T.Y., Marco, E., Giannoukos, G., et al., 2020. Dual AAV-based 'knock-out-and-replace' of rho as a therapeutic approach to treat Rho-associated autosomal dominant retinitis pigmentosa (Rho-adRP). Mol. Ther. 28, 108-109.
    Enache, O.M., Rendo, V., Abdusamad, M., Lam, D., Davison, D., Pal, S., Currimjee, N., Hess, J., Pantel, S., Nag, A., et al., 2020. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662-668.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Gautam, M., Jozic, A., Su, G.L., Herrera-Barrera, M., Curtis, A., Arrizabalaga, S., Tschetter, W., Ryals, R.C., Sahay, G., 2023. Lipid nanoparticles with peg-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14, 6468.
    Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An apobec3a-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. 36, 977-982.
    Giannelli, S.G., Luoni, M., Castoldi, V., Massimino, L., Cabassi, T., Angeloni, D., Demontis, G.C., Leocani, L., Andreazzoli, M., Broccoli, V., 2018. Cas9/sgRNA selective targeting of the P23H rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum. Mol. Genet. 27, 761-779.
    Grunewald, J., Zhou, R., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., Joung, J.K., 2019. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433-437.
    Gulati, S., Palczewski, K., 2023. Structural view of g protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem. Sci. 48, 172-186.
    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
    Hoang, D.A., Liao, B., Zheng, Z., Xiong, W., 2023. Mutation-independent gene knock-in therapy targeting 5'UTR for autosomal dominant retinitis pigmentosa. Signal Transduct. Target Ther. 8, 100.
    Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al., 2018. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939-946.
    Jacobson, S.G., Cideciyan, A.V., Roman, A.J., Sumaroka, A., Schwartz, S.B., Heon, E., Hauswirth, W.W., 2015. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372, 1920-1926.
    Jang, H.K., Jo, D.H., Lee, S.N., Cho, C.S., Jeong, Y.K., Jung, Y., Yu, J., Kim, J.H., Woo, J.S., Bae, S., 2021. High-purity production and precise editing of DNA base editing ribonucleoproteins. Sci. Adv. 7, eabg2661.
    Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al., 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
    Jo, D.H., Jang, H.K., Cho, C.S., Han, J.H., Ryu, G., Jung, Y., Bae, S., Kim, J.H., 2023. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing. Mol. Ther. Nucleic Acids 31, 16-27.
    Kabra, M., Shahi, P.K., Wang, Y., Sinha, D., Spillane, A., Newby, G.A., Saxena, S., Tong, Y., Chang, Y., Abdeen, A.A., et al., 2023. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J. Clin. Invest. 133, e171356.
    Kim, D., Kim, D.E., Lee, G., Cho, S.I., Kim, J.S., 2019. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430-435.
    Kluesner, M.G., Nedveck, D.A., Lahr, W.S., Garbe, J.R., Abrahante, J.E., Webber, B.R., Moriarity, B.S., 2018. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239-250.
    Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
    Kunte, M.M., Choudhury, S., Manheim, J.F., Shinde, V.M., Miura, M., Chiodo, V.A., Hauswirth, W.W., Gorbatyuk, O.S., Gorbatyuk, M.S., 2012. ER stress is involved in T17M rhodopsin-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 53, 3792-3800.
    Levy, J.M., Yeh, W.H., Pendse, N., Davis, J.R., Hennessey, E., Butcher, R., Koblan, L.W., Comander, J., Liu, Q., Liu, D.R., 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97-110.
    Lewin, A.S., Rossmiller, B., Mao, H.Y., 2014. Gene augmentation for adRP mutations in Rho. Cold Spring Harb. Perspect. Med. 4, a017400.
    Li, T., Snyder, W.K., Olsson, J.E., Dryja, T.P., 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: Evidence for defective vectorial transport of rhodopsin to the outer segments. Proc. Natl. Acad. Sci. U. S. A. 93, 14176-14181.
    Liang, P., Xie, X., Zhi, S., Sun, H., Zhang, X., Chen, Y., Chen, Y., Xiong, Y., Ma, W., Liu, D., et al., 2019. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 5222.
    Liu, W., Liu, S., Li, P., Yao, K., 2022a. Retinitis pigmentosa: Progress in molecular pathology and biotherapeutical strategies. Int. J. Mol. Sci. 23, 4883.
    Liu, X., Jia, R., Meng, X., Li, Y., Yang, L., 2022b. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp. Eye Res. 215, 108893.
    Liu, X., Qiao, J., Jia, R., Zhang, F., Meng, X., Li, Y., Yang, L., 2023. Allele-specific gene-editing approach for vision loss restoration in Rho-associated retinitis pigmentosa. Elife 12, e84056.
    Liu, Y., Qi, X., Zeng, Z., Wang, L., Wang, J., Zhang, T., Xu, Q., Shen, C., Zhou, G., Yang, S., et al., 2017. CRISPR/Cas9-mediated p53 and pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis b virus transgenic mice. Sci. Rep. 7, 2796.
    Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L., Li, Z., 2020. Precise base editing with CC context-specificity using engineered human apobec3g-nCas9 fusions. BMC Biol. 18, 111.
    Makino, C.L., Wen, X.H., Michaud, N.A., Covington, H.I., DiBenedetto, E., Hamm, H.E., Lem, J., Caruso, G., 2012. Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics. PLoS ONE 7, e37832.
    McKinley, K.L., Cheeseman, I.M., 2017. Large-scale analysis of CRISPR/Cas9 cell-cycle knockouts reveals the diversity of p53-dependent responses to cell-cycle defects. Dev. Cell 40, 405-420 e2.
    Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J. Cell Sci. 128, 4039-4045.
    Nahmad, A.D., Reuveni, E., Goldschmidt, E., Tenne, T., Liberman, M., Horovitz-Fried, M., Khosravi, R., Kobo, H., Reinstein, E., Madi, A., et al., 2022. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat. Biotechnol. 40, 1807-1813.
    Nemet, I., Ropelewski, P., Imanishi, Y., 2015. Rhodopsin trafficking and mistrafficking: Signals, molecular components, and mechanisms. Prog. Mol. Biol. Transl. Sci. 132, 39-71.
    Orlans, H.O., Barnard, A.R., Patricio, M.I., McClements, M.E., MacLaren, R.E., 2020. Effect of AAV-mediated rhodopsin gene augmentation on retinal degeneration caused by the dominant P23H rhodopsin mutation in a knock-in murine model. Hum. Gene Ther. 31, 730-742.
    Patrizi, C., Llado, M., Benati, D., Iodice, C., Marrocco, E., Guarascio, R., Surace, E.M., Cheetham, M.E., Auricchio, A., Recchia, A., 2021. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Am. J. Hum. Genet. 108, 295-308.
    Price, B.A., Sandoval, I.M., Chan, F., Nichols, R., Roman-Sanchez, R., Wensel, T.G., Wilson, J.H., 2012. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. PLoS ONE 7, e49889.
    Prusky, G.T., West, P.W.R., Douglas, R.M., 2000. Behavioral assessment of visual acuity in mice and rats. Vision Res. 40, 2201-2209.
    Pupo, A., Fernandez, A., Low, S.H., Francois, A., Suarez-Amaran, L., Samulski, R.J., 2022. AAV vectors: The rubik's cube of human gene therapy. Mol. Ther. 30, 3515-3541.
    Qin, H., Zhang, W., Zhang, S., Feng, Y., Xu, W., Qi, J., Zhang, Q., Xu, C., Liu, S., Zhang, J., et al., 2023. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J. Exp. Med. 220, e20220776.
    Rabbitts, T.H., 1994. Chromosomal translocations in human cancer. Nature. 372(6502), 143-149.
    Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., 2019. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717.
    Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
    Ripps, H., 2002. Cell death in retinitis pigmentosa: Gap junctions and the 'bystander' effect. Exp. Eye Res. 74, 327-336.
    Rivolta, C., Sharon, D., DeAngelis, M.M., Dryja, T.P., 2002. Retinitis pigmentosa and allied diseases: Numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet. 11, 1219-1227.
    Sakai, D., Hiraoka, M., Matsuzaki, M., Yokota, S., Hirami, Y., Onishi, A., Nakamura, M., Takahashi, M., Kurimoto, Y., Maeda, A., 2023. Genotype and phenotype characteristics of Rho-associated retinitis pigmentosa in the Japanese population. Jpn. J. Ophthalmol. 67, 138-148.
    Schneider, N., Sundaresan, Y., Gopalakrishnan, P., Beryozkin, A., Hanany, M., Levanon, E.Y., Banin, E., Ben-Aroya, S., Sharon, D., 2022. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog. Retin. Eye Res. 89, 101029.
    Shahin, S., Xu, H., Lu, B., Mercado, A., Jones, M.K., Bakondi, B., Wang, S., 2022. AAV-CRISPR/Cas9 gene editing preserves long-term vision in the P23H rat model of autosomal dominant retinitis pigmentosa. Pharmaceutics 14, 824.
    Tan, E., Wang, Q., Quiambao, A.B., Xu, X., Qtaishat, N.M., Peachey, N.S., Lem, J., Fliesler, S.J., Pepperberg, D.R., Naash, M.I., et al., 2001. The relationship between opsin overexpression and photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 42, 589-600.
    Wang, D., Tai, P.W.L., Gao, G.P., 2019. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358-378.
    Wang, D.Y., Chan, W.M., Tam, P.O.S., Baum, L., Lam, D.S.C., Chong, K.K.L., Fan, B.J., Pang, C.P., 2005. Gene mutations in retinitis pigmentosa and their clinical implications. Clin. Chim. Acta 351, 5-16.
    Wang, S.K., Xue, Y., Cepko, C.L., 2020. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J. Clin. Invest. 130, 4360-4369.
    Webber, B.R., Lonetree, C.L., Kluesner, M.G., Johnson, M.J., Pomeroy, E.J., Diers, M.D., Lahr, W.S., Draper, G.M., Slipek, N.J., Smeester, B.A., et al., 2019. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222.
    Wu, K.Y., Kulbay, M., Toameh, D., Xu, A.Q., Kalevar, A., Tran, S.D., 2023a. Retinitis pigmentosa: Novel therapeutic targets and drug development. Pharmaceutics 15, 685.
    Wu, W.H., Tsai, Y.T., Huang, I.W., Cheng, C.H., Hsu, C.W., Cui, X., Ryu, J., Quinn, P.M.J., Caruso, S.M., Lin, C.S., et al., 2022. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Mol. Ther. 30, 1407-1420.
    Wu, Y., Wan, X., Zhao, D., Chen, X., Wang, Y., Tang, X., Li, J., Li, S., Sun, X., Bi, C., et al., 2023b. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nat. Commun. 14, 4923.
    Yeh, W.H., Shubina-Oleinik, O., Levy, J.M., Pan, B., Newby, G.A., Wornow, M., Burt, R., Chen, J.C., Holt, J.R., Liu, D.R., 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12, eaay9101.
    Yu, W., Wu, Z., 2021. Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv. Drug Deliv. Rev. 168, 181-195.
    Zhang, X., Wensel, T.G., Kraft, T.W., 2003. GTPase regulators and photoresponses in cones of the eastern chipmunk. J. Neurosci. 23, 1287-1297.
    Zhen, F., Zou, T., Wang, T., Zhou, Y., Dong, S., Zhang, H., 2023. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci. 17, 1132179.
    Zhi, S., Chen, Y., Wu, G., Wen, J., Wu, J., Liu, Q., Li, Y., Kang, R., Hu, S., Wang, J., et al., 2022. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283-294.
    Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return