Amoasii, L., Hildyard, J.C.W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T.R., Massey, C., Shelton, J.M., et al., 2018. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science 362, 86-90.
|
Aranko, A.S., Wlodawer, A., Iwai, H., 2014. Nature's recipe for splitting inteins. Protein Eng. Des. Sel. 27, 263-271.
|
Athanasiou, D., Aguila, M., Bellingham, J., Li, W., McCulley, C., Reeves, P.J., Cheetham, M.E., 2018. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog. Retin. Eye Res. 62, 1-23.
|
Bainbridge, J.W., Mehat, M.S., Sundaram, V., Robbie, S.J., Barker, S.E., Ripamonti, C., Georgiadis, A., Mowat, F.M., Beattie, S.G., Gardner, P.J., et al., 2015. Long-term effect of gene therapy on leber's congenital amaurosis. N. Engl. J. Med. 372, 1887-1897.
|
Bak, R.O., Dever, D.P., Reinisch, A., Cruz Hernandez, D., Majeti, R., Porteus, M.H., 2017. Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using CRISPR/Cas9 and AAV6. Elife 6, e27873.
|
Bakondi, B., Lv, W., Lu, B., Jones, M.K., Tsai, Y., Kim, K.J., Levy, R., Akhtar, A.A., Breunig, J.J., Svendsen, C.N., et al., 2016. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol. Ther. 24, 556-563.
|
Banskota, S., Raguram, A., Suh, S., Du, S.W., Davis, J.R., Choi, E.H., Wang, X., Nielsen, S.C., Newby, G.A., Randolph, P.B., et al., 2022. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250-265.
|
Bowden, A.R., Morales-Juarez, D.A., Sczaniecka-Clift, M., Agudo, M.M., Lukashchuk, N., Thomas, J.C., Jackson, S.P., 2020. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. Elife 9, e55325.
|
Campochiaro, P.A., Mir, T.A., 2018. The mechanism of cone cell death in retinitis pigmentosa. Prog. Retin. Eye Res. 62, 24-37.
|
Cepko, C.L., Vandenberghe, L.H., 2013. Retinal gene therapy coming of age. Hum. Gene Ther. 24, 242-244.
|
Chen, Y., Zhi, S., Liu, W., Wen, J., Hu, S., Cao, T., Sun, H., Li, Y., Huang, L., Liu, Y., et al., 2020. Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods 4, 2000309.
|
Choudhury, S., Nashine, S., Bhootada, Y., Kunte, M.M., Gorbatyuk, O., Lewin, A.S., Gorbatyuk, M., 2014. Modulation of the rate of retinal degeneration in T17M Rho mice by reprogramming the unfolded protein response. Adv. Exp. Med. Biol. 801, 455-462.
|
Cideciyan, A.V., Hood, D.C., Huang, Y., Banin, E., Li, Z.-Y., Stone, E.M., Milam, A.H., Jacobson, S.G., 1998. Disease sequence from mutant rhodopsin allele to rod and cone photoreceptor degeneration in man. Proc. Natl. Acad. Sci. 95, 7103-7108.
|
Cideciyan, A.V., Jacobson, S.G., Beltran, W.A., Sumaroka, A., Swider, M., Iwabe, S., Roman, A.J., Olivares, M.B., Schwartz, S.B., Komaromy, A.M., et al., 2013. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. U. S. A. 110, E517-525.
|
Cideciyan, A.V., Swider, M., Schwartz, S.B., Stone, E.M., Jacobson, S.G., 2015. Predicting progression of Abca4-associated retinal degenerations based on longitudinal measurements of the leading disease front. Invest. Ophthalmol. Vis. Sci. 56, 5946-5955.
|
Concepcion, F., Chen, J., 2010. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: A mouse model of Q344ter-induced retinal degeneration. PLoS ONE 5, e10904.
|
Daiger, S.P., Bowne, S.J., Sullivan, L.S., 2014. Genes and mutations causing autosomal dominant retinitis pigmentosa. Cold Spring Harb. Perspect. Med. 5, a017129.
|
Diakatou, M., Manes, G., Bocquet, B., Meunier, I., Kalatzis, V., 2019. Genome editing as a treatment for the most prevalent causative genes of autosomal dominant retinitis pigmentosa. Int. J. Mol. Sci. 20, 2542.
|
Diner, B.A., Dass, A., Nayak, R., Flinkstrom, Z., Tallo, T., DaSilva, J., Gotta, G., Wang, T.Y., Marco, E., Giannoukos, G., et al., 2020. Dual AAV-based 'knock-out-and-replace' of rho as a therapeutic approach to treat Rho-associated autosomal dominant retinitis pigmentosa (Rho-adRP). Mol. Ther. 28, 108-109.
|
Enache, O.M., Rendo, V., Abdusamad, M., Lam, D., Davison, D., Pal, S., Currimjee, N., Hess, J., Pantel, S., Nag, A., et al., 2020. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662-668.
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
Gautam, M., Jozic, A., Su, G.L., Herrera-Barrera, M., Curtis, A., Arrizabalaga, S., Tschetter, W., Ryals, R.C., Sahay, G., 2023. Lipid nanoparticles with peg-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14, 6468.
|
Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An apobec3a-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. 36, 977-982.
|
Giannelli, S.G., Luoni, M., Castoldi, V., Massimino, L., Cabassi, T., Angeloni, D., Demontis, G.C., Leocani, L., Andreazzoli, M., Broccoli, V., 2018. Cas9/sgRNA selective targeting of the P23H rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum. Mol. Genet. 27, 761-779.
|
Grunewald, J., Zhou, R., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., Joung, J.K., 2019. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433-437.
|
Gulati, S., Palczewski, K., 2023. Structural view of g protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem. Sci. 48, 172-186.
|
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
|
Hoang, D.A., Liao, B., Zheng, Z., Xiong, W., 2023. Mutation-independent gene knock-in therapy targeting 5'UTR for autosomal dominant retinitis pigmentosa. Signal Transduct. Target Ther. 8, 100.
|
Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al., 2018. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939-946.
|
Jacobson, S.G., Cideciyan, A.V., Roman, A.J., Sumaroka, A., Schwartz, S.B., Heon, E., Hauswirth, W.W., 2015. Improvement and decline in vision with gene therapy in childhood blindness. N. Engl. J. Med. 372, 1920-1926.
|
Jang, H.K., Jo, D.H., Lee, S.N., Cho, C.S., Jeong, Y.K., Jung, Y., Yu, J., Kim, J.H., Woo, J.S., Bae, S., 2021. High-purity production and precise editing of DNA base editing ribonucleoproteins. Sci. Adv. 7, eabg2661.
|
Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al., 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
|
Jo, D.H., Jang, H.K., Cho, C.S., Han, J.H., Ryu, G., Jung, Y., Bae, S., Kim, J.H., 2023. Visual function restoration in a mouse model of Leber congenital amaurosis via therapeutic base editing. Mol. Ther. Nucleic Acids 31, 16-27.
|
Kabra, M., Shahi, P.K., Wang, Y., Sinha, D., Spillane, A., Newby, G.A., Saxena, S., Tong, Y., Chang, Y., Abdeen, A.A., et al., 2023. Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channelopathy. J. Clin. Invest. 133, e171356.
|
Kim, D., Kim, D.E., Lee, G., Cho, S.I., Kim, J.S., 2019. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430-435.
|
Kluesner, M.G., Nedveck, D.A., Lahr, W.S., Garbe, J.R., Abrahante, J.E., Webber, B.R., Moriarity, B.S., 2018. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239-250.
|
Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
|
Kunte, M.M., Choudhury, S., Manheim, J.F., Shinde, V.M., Miura, M., Chiodo, V.A., Hauswirth, W.W., Gorbatyuk, O.S., Gorbatyuk, M.S., 2012. ER stress is involved in T17M rhodopsin-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 53, 3792-3800.
|
Levy, J.M., Yeh, W.H., Pendse, N., Davis, J.R., Hennessey, E., Butcher, R., Koblan, L.W., Comander, J., Liu, Q., Liu, D.R., 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97-110.
|
Lewin, A.S., Rossmiller, B., Mao, H.Y., 2014. Gene augmentation for adRP mutations in Rho. Cold Spring Harb. Perspect. Med. 4, a017400.
|
Li, T., Snyder, W.K., Olsson, J.E., Dryja, T.P., 1996. Transgenic mice carrying the dominant rhodopsin mutation P347S: Evidence for defective vectorial transport of rhodopsin to the outer segments. Proc. Natl. Acad. Sci. U. S. A. 93, 14176-14181.
|
Liang, P., Xie, X., Zhi, S., Sun, H., Zhang, X., Chen, Y., Chen, Y., Xiong, Y., Ma, W., Liu, D., et al., 2019. Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nat. Commun. 10, 5222.
|
Liu, W., Liu, S., Li, P., Yao, K., 2022a. Retinitis pigmentosa: Progress in molecular pathology and biotherapeutical strategies. Int. J. Mol. Sci. 23, 4883.
|
Liu, X., Jia, R., Meng, X., Li, Y., Yang, L., 2022b. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. Exp. Eye Res. 215, 108893.
|
Liu, X., Qiao, J., Jia, R., Zhang, F., Meng, X., Li, Y., Yang, L., 2023. Allele-specific gene-editing approach for vision loss restoration in Rho-associated retinitis pigmentosa. Elife 12, e84056.
|
Liu, Y., Qi, X., Zeng, Z., Wang, L., Wang, J., Zhang, T., Xu, Q., Shen, C., Zhou, G., Yang, S., et al., 2017. CRISPR/Cas9-mediated p53 and pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis b virus transgenic mice. Sci. Rep. 7, 2796.
|
Liu, Z., Chen, S., Shan, H., Jia, Y., Chen, M., Song, Y., Lai, L., Li, Z., 2020. Precise base editing with CC context-specificity using engineered human apobec3g-nCas9 fusions. BMC Biol. 18, 111.
|
Makino, C.L., Wen, X.H., Michaud, N.A., Covington, H.I., DiBenedetto, E., Hamm, H.E., Lem, J., Caruso, G., 2012. Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics. PLoS ONE 7, e37832.
|
McKinley, K.L., Cheeseman, I.M., 2017. Large-scale analysis of CRISPR/Cas9 cell-cycle knockouts reveals the diversity of p53-dependent responses to cell-cycle defects. Dev. Cell 40, 405-420 e2.
|
Molday, R.S., Moritz, O.L., 2015. Photoreceptors at a glance. J. Cell Sci. 128, 4039-4045.
|
Nahmad, A.D., Reuveni, E., Goldschmidt, E., Tenne, T., Liberman, M., Horovitz-Fried, M., Khosravi, R., Kobo, H., Reinstein, E., Madi, A., et al., 2022. Frequent aneuploidy in primary human T cells after CRISPR-Cas9 cleavage. Nat. Biotechnol. 40, 1807-1813.
|
Nemet, I., Ropelewski, P., Imanishi, Y., 2015. Rhodopsin trafficking and mistrafficking: Signals, molecular components, and mechanisms. Prog. Mol. Biol. Transl. Sci. 132, 39-71.
|
Orlans, H.O., Barnard, A.R., Patricio, M.I., McClements, M.E., MacLaren, R.E., 2020. Effect of AAV-mediated rhodopsin gene augmentation on retinal degeneration caused by the dominant P23H rhodopsin mutation in a knock-in murine model. Hum. Gene Ther. 31, 730-742.
|
Patrizi, C., Llado, M., Benati, D., Iodice, C., Marrocco, E., Guarascio, R., Surace, E.M., Cheetham, M.E., Auricchio, A., Recchia, A., 2021. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Am. J. Hum. Genet. 108, 295-308.
|
Price, B.A., Sandoval, I.M., Chan, F., Nichols, R., Roman-Sanchez, R., Wensel, T.G., Wilson, J.H., 2012. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. PLoS ONE 7, e49889.
|
Prusky, G.T., West, P.W.R., Douglas, R.M., 2000. Behavioral assessment of visual acuity in mice and rats. Vision Res. 40, 2201-2209.
|
Pupo, A., Fernandez, A., Low, S.H., Francois, A., Suarez-Amaran, L., Samulski, R.J., 2022. AAV vectors: The rubik's cube of human gene therapy. Mol. Ther. 30, 3515-3541.
|
Qin, H., Zhang, W., Zhang, S., Feng, Y., Xu, W., Qi, J., Zhang, Q., Xu, C., Liu, S., Zhang, J., et al., 2023. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J. Exp. Med. 220, e20220776.
|
Rabbitts, T.H., 1994. Chromosomal translocations in human cancer. Nature. 372(6502), 143-149.
|
Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., 2019. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717.
|
Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
|
Ripps, H., 2002. Cell death in retinitis pigmentosa: Gap junctions and the 'bystander' effect. Exp. Eye Res. 74, 327-336.
|
Rivolta, C., Sharon, D., DeAngelis, M.M., Dryja, T.P., 2002. Retinitis pigmentosa and allied diseases: Numerous diseases, genes, and inheritance patterns. Hum. Mol. Genet. 11, 1219-1227.
|
Sakai, D., Hiraoka, M., Matsuzaki, M., Yokota, S., Hirami, Y., Onishi, A., Nakamura, M., Takahashi, M., Kurimoto, Y., Maeda, A., 2023. Genotype and phenotype characteristics of Rho-associated retinitis pigmentosa in the Japanese population. Jpn. J. Ophthalmol. 67, 138-148.
|
Schneider, N., Sundaresan, Y., Gopalakrishnan, P., Beryozkin, A., Hanany, M., Levanon, E.Y., Banin, E., Ben-Aroya, S., Sharon, D., 2022. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog. Retin. Eye Res. 89, 101029.
|
Shahin, S., Xu, H., Lu, B., Mercado, A., Jones, M.K., Bakondi, B., Wang, S., 2022. AAV-CRISPR/Cas9 gene editing preserves long-term vision in the P23H rat model of autosomal dominant retinitis pigmentosa. Pharmaceutics 14, 824.
|
Tan, E., Wang, Q., Quiambao, A.B., Xu, X., Qtaishat, N.M., Peachey, N.S., Lem, J., Fliesler, S.J., Pepperberg, D.R., Naash, M.I., et al., 2001. The relationship between opsin overexpression and photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 42, 589-600.
|
Wang, D., Tai, P.W.L., Gao, G.P., 2019. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358-378.
|
Wang, D.Y., Chan, W.M., Tam, P.O.S., Baum, L., Lam, D.S.C., Chong, K.K.L., Fan, B.J., Pang, C.P., 2005. Gene mutations in retinitis pigmentosa and their clinical implications. Clin. Chim. Acta 351, 5-16.
|
Wang, S.K., Xue, Y., Cepko, C.L., 2020. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J. Clin. Invest. 130, 4360-4369.
|
Webber, B.R., Lonetree, C.L., Kluesner, M.G., Johnson, M.J., Pomeroy, E.J., Diers, M.D., Lahr, W.S., Draper, G.M., Slipek, N.J., Smeester, B.A., et al., 2019. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222.
|
Wu, K.Y., Kulbay, M., Toameh, D., Xu, A.Q., Kalevar, A., Tran, S.D., 2023a. Retinitis pigmentosa: Novel therapeutic targets and drug development. Pharmaceutics 15, 685.
|
Wu, W.H., Tsai, Y.T., Huang, I.W., Cheng, C.H., Hsu, C.W., Cui, X., Ryu, J., Quinn, P.M.J., Caruso, S.M., Lin, C.S., et al., 2022. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Mol. Ther. 30, 1407-1420.
|
Wu, Y., Wan, X., Zhao, D., Chen, X., Wang, Y., Tang, X., Li, J., Li, S., Sun, X., Bi, C., et al., 2023b. AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nat. Commun. 14, 4923.
|
Yeh, W.H., Shubina-Oleinik, O., Levy, J.M., Pan, B., Newby, G.A., Wornow, M., Burt, R., Chen, J.C., Holt, J.R., Liu, D.R., 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12, eaay9101.
|
Yu, W., Wu, Z., 2021. Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv. Drug Deliv. Rev. 168, 181-195.
|
Zhang, X., Wensel, T.G., Kraft, T.W., 2003. GTPase regulators and photoresponses in cones of the eastern chipmunk. J. Neurosci. 23, 1287-1297.
|
Zhen, F., Zou, T., Wang, T., Zhou, Y., Dong, S., Zhang, H., 2023. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci. 17, 1132179.
|
Zhi, S., Chen, Y., Wu, G., Wen, J., Wu, J., Liu, Q., Li, Y., Kang, R., Hu, S., Wang, J., et al., 2022. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283-294.
|
Zuo, E., Sun, Y., Wei, W., Yuan, T., Ying, W., Sun, H., Yuan, L., Steinmetz, L.M., Li, Y., Yang, H., 2019. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289-292.
|