Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., et al., 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493-500.
|
Ahituv, N., Zhu, Y., Visel, A., Holt, A., Afzal, V., Pennacchio, L.A., Rubin, E.M., 2007. Deletion of ultraconserved elements yields viable mice. PLoS Biol. 5, e234.
|
Akishina, A.A., Vorontsova, J.E., Cherezov, R.O., Mertsalov, I.B., Zatsepina, O.G., Slezinger, M.S., Panin, V.M., Petruk, S., Enikolopov, G.N., Mazo, A., et al., 2017. Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers. Oncotarget 8, 102934-102947.
|
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
|
Bashirullah, A., Lam, G., Yin, V.P., Thummel, C.S., 2007. dTrf2 is required for transcriptional and developmental responses to ecdysone during Drosophila Metamorphosis. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 236, 3173-3179.
|
Batut, B., van den Beek, M., Doyle, M.A., Soranzo, N., 2021. RNA-Seq data analysis in Galaxy, in: Picardi, E. (Ed.), RNA Bioinformatics. Springer US, New York, NY, pp. 367-392.
|
Begun, D.J., Lindfors, H.A., Kern, A.D., Jones, C.D., 2007. Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176, 1131-1137.
|
Begun, D.J., Lindfors, H.A., Thompson, M.E., Holloway, A.K., 2006. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics, 172, 1675-1681.
|
Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W.J., Mattick, J.S., Haussler, D., 2004. Ultraconserved elements in the human genome. Science 304, 1321-1325.
|
Bischof, J., Maeda, R.K., Hediger, M., Karch, F., Basler, K., 2007. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31 integrases. Proc. Natl. Acad. Sci. U. S. A. 104, 3312-3317.
|
Brand, A.H., Perrimon, N., 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
|
Brandt, T., Corces, V.G., 2008. The Lawc protein is required for proper transcription by RNA polymerase II in Drosophila. Mol. Genet. Genomics 280, 385-396.
|
Brody, T., Yavatkar, A., Kuzin, A., Odenwald, W.F., 2020. Ultraconserved non-coding DNA within Diptera and Hymenoptera. G3 (Bethesda) 10, 3015-3024.
|
Broeils, L.A., Ruiz-Orera, J., Snel, B., Hubner, N., van Heesch, S., 2023. Evolution and implications of de novo genes in humans. Nat. Ecol. Evol. 7, 804-815.
|
Carvunis, A.-R., Rolland T., Wapinski, I., Calderwood, M.A., Yildirim, M.A., Simonis, N., Charloteaux, B., Hidalgo, C.A., Barbette, J., Santhanam, B., Brar, G.A., Weissman, J.S., Regev, A., Thierry-Mieg, N., Cusick, M.E., Vidal, M., 2012. Proto-genes and de novo gene birth. Nature 487, 370-374.
|
Chen, R., Xiao, N., Lu, Y., Tao, T., Huang, Q., Wang, S., Wang, Z., Chuan, M., Bu, Q., Lu, Z., et al., 2023. A de novo evolved gene contributes to rice grain shape difference between indica and japonica. Nat. Commun. 14, 5906.
|
Chen, S., Krinsky, B.H., Long, M., 2013. New genes as drivers of phenotypic evolution. Nat. Rev. Genet. 14, 645-660.
|
Clarke, T.F., Clark, P.L., 2008. Rare codons cluster. PLoS ONE 3, e3412.
|
Cummins, M., Watson, C., Edwards, R.J., Mattick, J.S., 2024. The evolution of ultraconserved elements in Vertebrates. Mol. Biol. Evol. 41, msae146.
|
Dantonel, J.-C., Wurtz, J.-M., Poch, O., Moras, D., Tora, L., 1999. The TBP-like factor: an alternative transcription factor in Metazoa? Trends Biochem. Sci. 24, 335-339.
|
Davidson, I., 2003. The genetics of TBP and TBP-related factors. Trends Biochem. Sci. 28, 391-398.
|
DeLuca, S.Z., Spradling, A.C., 2018. Efficient expression of genes in the Drosophila germline using a UAS promoter free of interference by Hsp70 piRNAs. Genetics 209, 381-387.
|
Dickel, D.E., Ypsilanti, A.R., Pla, R., Zhu, Y., Barozzi, I., Mannion, B.J., Khin, Y.S., Fukuda-Yuzawa, Y., Plajzer-Frick, I., Pickle, C.S., et al., 2018. Ultraconserved enhancers are required for normal development. Cell 172, 491-499.
|
Dowling, D., Schmitz, J.F., Bornberg-Bauer, E., 2020. Stochastic gain and loss of novel transcribed open reading frames in the human lineage. Genome Biol. Evol. 12, 2183-2195.
|
Elgar, G., Vavouri, T., 2008. Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. Trends Genet. 24, 344-352.
|
Erokhin, M., Brown, J.L., Lomaev, D., Vorobyeva, N.E., Zhang, L., Fab, L.V., Mazina, M.Y., Kulakovskiy, I.V., Ziganshin, R.H., Schedl, P., et al., 2023. Crol contributes to PRE-mediated repression and Polycomb group proteins recruitment in Drosophila. Nucleic Acids Research 51, 6087.
|
Gearing, L.J., Cumming, H.E., Chapman, R., Finkel, A.M., Woodhouse, I.B., Luu, K., Gould, J.A., Forster, S.C., Hertzog, P.J., 2019. CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS ONE 14, e0215495.
|
Gubala, A.M., Schmitz, J.F., Kearns, M.J., Vinh, T.T., Bornberg-Bauer, E., Wolfner, M.F., Findlay, G.D., 2017. The Goddard and Saturn genes are essential for Drosophila male fertility and may have arisen de novo. Mol. Biol. Evol. 34, 1066-1082.
|
Guerra-Almeida, D., Nunes-da-Fonseca, R., 2020. Small open reading frames: how important are they for molecular evolution? Front. Genet. 11, 574737.
|
Guerzoni, D., McLysaght, A., 2016. De Novo Genes arise at a slow but steady rate along the primate lineage and have been subject to incomplete lineage sorting. Genome Biol. Evol. 8, 1222-1232.
|
Gunawan, F., Arandjelovic, M., Godt, D., 2013. The Maf factor Traffic jam both enables and inhibits collective cell migration in Drosophila oogenesis. Dev. Camb. Engl. 140, 2808-2817.
|
Gratz, S.J., Harrison, M.M., Wildonger, J., O’Connor-Giles, K.M., 2015. Precise genome editing of Drosophila with CRISPR RNA-guided Cas9. Methods Mol Biol 1311, 335-348.
|
Hannon Bozorgmehr, J., 2024. Four classic “de novo” genes all have plausible homologs and likely evolved from retro-duplicated or pseudogenic sequences. Mol. Genet. Genomics 299, 6.
|
Hardison, R.C., 2000. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet. TIG 16, 369-372.
|
Iyengar, B.R., Bornberg-Bauer, E., 2023. Neutral models of de novo gene emergence suggest that gene evolution has a preferred trajectory. Mol. Biol. Evol. 40, msad079.
|
Jeffares, D.C., Tomiczek, B., Sojo, V., dos Reis, M., 2015. A Beginners Guide to Estimating the Non-synonymous to Synonymous Rate Ratio of all Protein-Coding Genes in a Genome, in: Peacock, C. (Ed.), Parasite Genomics Protocols. Springer, New York, NY, pp. 65-90.
|
Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, D., 2002. The human genome browser at UCSC. Genome Res. 12, 996-1006.
|
Klasberg, S., Bitard-Feildel, T., Callebaut, I., Bornberg-Bauer, E., 2018. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J. 285, 2605-2625.
|
Kohany, O., Gentles, A.J., Hankus, L., Jurka, J., 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 7, 474.
|
Kopytova, D.V., Krasnov, A.N., Kopantceva, M.R., Nabirochkina, E.N., Nikolenko, J.V., Maksimenko, O., Kurshakova, M.M., Lebedeva, L.A., Yerokhin, M.M., Simonova, O.B., et al., 2006. Two isoforms of Drosophila TRF2 are involved in embryonic development, premeiotic chromatin condensation, and proper differentiation of germ cells of both sexes. Mol. Cell. Biol. 26, 7492-7505.
|
Kreft, L., Soete, A., Hulpiau, P., Botzki, A., Saeys, Y., De Bleser, P., 2017. ConTra v3: a tool to identify transcription factor binding sites across species, update 2017. Nucleic Acids Res. 45, W490-W494.
|
Krause, S.A., Overend, G., Dow, J.A.T., Leader, D.P., 2022. FlyAtlas 2 in 2022: enhancements to the Drosophila melanogaster expression atlas. Nucleic Acids Res 50, D1010-D1015.
|
Kumar, S., Suleski, M., Craig, J.M., Kasprowicz, A.E., Sanderford, M., Li, M., Stecher, G., Hedges, S.B., 2022. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174.
|
Kumari, P., Sampath, K., 2015. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions. Semin. Cell Dev. Biol. 47-48, 40-51.
|
Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242-W245.
|
Levine, M.T., Jones, C.D., Kern, A.D., Lindfors, H.A., Begun, D.J., 2006. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl. Acad. Sci. U. S. A. 103, 9935-9939.
|
Li, Z.-W., Chen, X., Wu, Q., Hagmann, J., Han, T.-S., Zou, Y.-P., Ge, S., Guo, Y.-L., 2016. On the origin of de novo genes in Arabidopsis thaliana populations. Genome Biol. Evol. 8, 2190-2202.
|
Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A.R.N., Lopez, R., Butcher, S., 2024. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. gkae241.
|
Mazo, A., Hodgson, J.W., Petruk, S., Sedkov, Y., Brock, H.W., 2007. Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755-2761.
|
McLysaght, A., Hurst, L.D., 2016. Open questions in the study of de novo genes: what, how and why. Nat. Rev. Genet. 17, 567-578.
|
Mela, A., Tsitilou, S.G., Yannopoulos, G., 2009. Wiser (tsl): a recessive X-linked temperature-sensitive lethal mutation that affects the wings and the eyes in Drosophila melanogaster. Genetica 135, 333-345.
|
Montanes, J.C., Huertas, M., Messeguer, X., Alba, M.M., 2023. Evolutionary trajectories of new duplicated and putative de novo genes. Mol. Biol. Evol. 40, msad098.
|
Moyers, B.A., Zhang, J., 2015. Phylostratigraphic bias creates spurious patterns of genome evolution. Mol. Biol. Evol. 32, 258-267.
|
Murphy, D.N., McLysaght, A., 2012. De novo origin of protein-coding genes in murine rodents. PloS ONE 7, e48650.
|
Nam, J.-W., Choi, S.-W., You, B.-H., 2016. Incredible RNA: Dual functions of coding and noncoding. Mol. Cells 39, 367-374.
|
Neme, R., Tautz, D., 2016. Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife 5, e09977.
|
Neme, R., Tautz, D., 2013. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics 14, 117.
|
Nishimura, Y., Yamada, K., Okazaki, Y., Ogata, H., 2024. DiGAlign: Versatile and interactive visualization of sequence alignment for comparative genomics. Microbes Environ. 39, ME23061.
|
Ogienko, A.A., Andreyeva, E.N., Omelina, E.S., Oshchepkova, A.L., Pindyurin, A.V., 2020. Molecular and cytological analysis of widely-used Gal4 driver lines for Drosophila neurobiology. BMC Genet. 21, 96.
|
Okonechnikov, K., Golosova, O., Fursov, M., UGENE team, 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinforma. Oxf. Engl. 28, 1166-1167.
|
Patraquim, P., Magny, E.G., Pueyo, J.I., Platero, A.I., Couso, J.P., 2022. Translation and natural selection of micropeptides from long non-canonical RNAs. Nat. Commun. 13, 6515.
|
Peng, J., Zhao, L., 2024. The origin and structural evolution of de novo genes in Drosophila. Nat. Commun. 15, 810.
|
Petrzilek, J., Pasulka, J., Malik, R., Horvat, F., Kataruka, S., Fulka, H., Svoboda, P., 2022. De novo emergence, existence, and demise of a protein-coding gene in murids. BMC Biol. 20, 272.
|
Piovesan, D., Del Conte, A., Clementel, D., Monzon, A.M., Bevilacqua, M., Aspromonte, M.C., Iserte, J.A., Orti, F.E., Marino-Buslje, C., Tosatto, S.C.E., 2023. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Res. 51, D438-D444.
|
Prabh, N., Rodelsperger, C., 2019. De novo, divergence, and mixed origin contribute to the emergence of orphan genes in pristionchus nematodes. G3 9, 2277-2286.
|
Redl, I., Fisicaro, C., Dutton, O., Hoffmann, F., Henderson, L., Owens, B.M.J., Heberling, M., Paci, E., Tamiola, K., 2023. ADOPT: intrinsic protein disorder prediction through deep bidirectional transformers. NAR Genom. Bioinform. 5, lqad041.
|
Rele, C.P., Sandlin, K.M., Leung, W., Reed, L.K., 2023. Manual annotation of Drosophila genes: a genomics education partnership protocol. F1000Research 11, 1579.
|
Rivard, E.L., Ludwig, A.G., Patel, P.H., Grandchamp, A., Arnold, S.E., Berger, A., Scott, E.M., Kelly, B.J., Mascha, G.C., Bornberg-Bauer, E., et al, 2021. A putative de novo evolved gene required for spermatid chromatin condensation in Drosophila melanogaster. PLOS Genet. 17, e1009787.
|
Robinson, J.T., Thorvaldsdottir, H., Turner, D., Mesirov, J.P., 2023. igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 39, btac830.
|
Ryu, T., Seridi, L., Ravasi, T., 2012. The evolution of ultraconserved elements with different phylogenetic origins. BMC Evol. Biol. 12, 236.
|
Savard, J., Marques-Souza, H., Aranda, M., Tautz, D., 2006. A segmentation gene in Tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126, 559-569.
|
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al., 2012. Fiji - an open source platform for biological image analysis. Nat. Methods 9, 676-682.
|
Schlotterer, C., 2015. Genes from scratch - the evolutionary fate of de novo genes. Trends Genet. 31, 215-219.
|
Slater, G.S.C., Birney, E., 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31.
|
Sloutskin, A., Danino, Y.M., Orenstein, Y., Zehavi, Y., Doniger, T., Shamir, R., Juven-Gershon, T., 2015. ElemeNT: a computational tool for detecting core promoter elements. Transcription 6, 41-50.
|
Snetkova, V., Pennacchio, L.A., Visel, A., Dickel, D.E., 2022. Perfect and imperfect views of ultraconserved sequences. Nat. Rev. Genet. 23, 182-194.
|
Steinway, S.N., Dannenfelser, R., Laucius, C.D., Hayes, J.E., Nayak, S., 2010. JCoDA: a tool for detecting evolutionary selection. BMC Bioinformatics 11, 284.
|
Tautz, D., Domazet-Loso, T., 2011. The evolutionary origin of orphan genes. Nat. Rev. Genet. 12, 692-702.
|
The Galaxy Community, 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345-W351.
|
Vakirlis, N., Carvunis, A.-R., McLysaght, A., 2020. Synteny-based analyses indicate that sequence divergence is not the main source of orphan genes. eLife 9, e53500.
|
van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., et al., 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589-6631.
|
Van Oss, S.B., Carvunis, A.-R., 2019. De novo gene birth. PLoS Genet. 15, e1008160.
|
Weisman, C.M., 2022. The origins and functions of de novo genes: against all odds? J. Mol. Evol. 90, 244-257.
|
Wissler, L., Gadau, J., Simola, D.F., Helmkampf, M., Bornberg-Bauer, E., 2013. Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol. Evol. 5, 439-455.
|
Xiao, W., Liu, H., Li, Y., Li, X., Xu, C., Long, M., Wang, S., 2009. A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLOS ONE 4, e4603.
|
Xie, C., Bekpen, C., Kunzel, S., Keshavarz, M., Krebs-Wheaton, R., Skrabar, N., Ullrich, K.K., Tautz, D., 2019. A de novo evolved gene in the house mouse regulates female pregnancy cycles. eLife 8, e44392.
|
Xie, C., Zhang, Y.E., Chen, J.-Y., Liu, C.-J., Zhou, W.-Z., Li, Y., Zhang, M., Zhang, R., Wei, L., Li, C.-Y., 2012. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLOS Genet. 8, e1002942.
|
Zhang, J.-Y., Zhou, Q., 2019. On the regulatory evolution of new genes throughout their life history. Mol. Biol. Evol. 36, 15-27.
|
Zhang, L., Ren, Y., Yang, T., Li, G., Chen, J., Gschwend, A.R., Yu, Y., Hou, G., Zi, J., Zhou, R., et al., 2019a. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679-690.
|
Zhang, W., Gao, Y., Long, M., Shen, B., 2019b. Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans. Sci. China Life Sci. 62, 579-593.
|
Zhao, L., Saelao, P., Jones, C.D., Begun, D.J., 2014. Origin and spread of de novo genes in Drosophila melanogaster populations. Science 343, 769-772.
|
Zhou, Q., Zhang, G., Zhang, Y., Xu, S., Zhao, R., Zhan, Z., Li, X., Ding, Y., Yang, S., Wang, W., 2008. On the origin of new genes in Drosophila. Genome Res. 18, 1446-1455.
|
Zhuang, X., Yang, C., Murphy, K.R., Cheng, C.-H.C., 2019. Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc. Natl. Acad. Sci. U. S. A. 116, 4400-4405.
|
Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J., Lupas, A.N., Alva, V., 2018. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol., 430, 2237-2243.
|