Boer, M.P., Deanne, W., Lizhi, F., Podlich, D.W., Lang, L., Mark, C., Eeuwijk, F.A., Van, 2007. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177, 1801-1813.
|
Butler, D.G., Cullis, B.R., Gilmour, A.R., Gogel, B.J., Thompson, R., 2023. ASReml-R reference manual version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk.
|
Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y., Xia, R., 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant. 16, 1733-1742.
|
Chen, X., Zhao, F., Xu, S., 2010. Mapping environment-specific quantitative trait loci. Genetics 186, 1053-1066.
|
Cuevas, J., Crossa, J., Soberanis, V., Perez-Elizalde, S., Perez-Rodriguez, P., Campos, G.D.L., Montesinos-lopez, O.A., Burgueno, J., 2016. Genomic prediction of genotype× environment interaction kernel regression models. Plant Genome 9, https://doi.org/10.3835/plantgenome2016.03.0024.
|
de los Campos, G., Sorensen, D., Gianola, D., 2015. Genomic heritability: what is it? PLoS Genet. 11, e1005048.
|
Evangelou, E., Ioannidis, J.P.A., 2013. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379-389.
|
Fisher, R.A., 1932. Statistical methods for research workers. 4th edition. London: Oliver and Boyd.
|
Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D., Kleinhofs, A., 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor. Appl. Genet. 87, 392-401.
|
Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 100, 2574-2579.
|
Hua, J., Xing, Y., Xu, C., Sun, X., Yu, S., Zhang, Q., 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885-1895.
|
Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I., Kyozuka, J., 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79-86.
|
Jin, J., Huang, W., Jp, Yang, J., Shi, M., Zhu, M., Luo, D., Lin, H., 2008. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365-1369.
|
Kang, E.Y., Han, B., Furlotte, N., Joo, J.W.J., Shih, D., Davis, R.C., Lusis, A.J., Eskin, E., 2014. Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice. PLoS Genet. 10, e1004022.
|
Li, M., Shi, L., MachHugh, D.E., Wang, X., Tian, J., Wang, L., Deng, Y., Wang, L., Zhao, F., 2025a. Genomic prediction based on unbiased estimation of the genomic relationship matrix in pigs. Animal (In Press), https://doi.org/10.1016/j.animal.2024.101402.
|
Li, M., Tall, T., MachHugh, D.E., Chen, L., Garrick, D., Wang, L., Zhao, F., 2025b. KPRR: A novel machine learning approach for effectively capturing nonadditive effects in genomic prediction. Brief Bioinform. 26, bbae683.
|
Li, S., Wang, J., Zhang, L., 2015. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS ONE 10, e0132414.
|
Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., Zhou, K., 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043.
|
Patterson, H.D., Thompson, R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545-554.
|
Piepho, H.P., 2000. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156, 2043.
|
SAS Institute, 2009. SAS 9.4 product documentation. SAS Institute, Cary, NC, USA.
|
Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40, 1360.
|
VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414-4423.
|
Wang, S.B., Wen, Y.J., Ren, W.L., Ni, Y.L., Zhang, J., Feng, J.Y., Zhang, Y.M., 2016. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci. Rep. 6, 29951.
|
Wen, Y.J., Zhang, Y.W., Zhang, J., Feng, J.Y., Dunwell, J.M., Zhang, Y.M., 2019. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform. 20, 1913-1924.
|
Xing, Y., Tan, Y., Hua, J., Sun, X., Xu, C., Zhang, Q., 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105, 248-257.
|
Xu, S., 2013. Mapping quantitative trait Loci by controlling polygenic background effects. Genetics 195, 1209-1222.
|
Xu, S., Xu, Y., Gong, L., Zhang, Q., 2016. Metabolomic prediction of yield in hybrid rice. Plant J. 88, 219-227.
|
Xue, W., Xing, Y., Weng, X., Yu, Z., Tang, W., Lei, W., Zhou, H., Yu, S., Xu, C., Li, X., 2009. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
|
Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J., Zhang, Q., 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PloS ONE 6, e17595.
|
Zaman, M.R., Paul, D.N.R., Akhter, N., Howlader, M.H., Kabir, M.S., 2006. Chi-square mixture of Chi-square distributions. J. Appl. Sci. 6, 243-246.
|
Zhao, F., Xu, S., 2012a. An expectation and maximization algorithm for estimating Q×E interaction effects. Theor. Appl. Genet. 124, 1375-1387.
|
Zhao, F., Xu, S., 2012b. Genotype by environment interaction of quantitative traits: A case study in barley. G3 2, 779-788.
|
Zhao, F., Zhang, P., Wang, X., Akdemir, D., Garrick, D., He, J., Wang, L., 2023. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement. J. Anim. Sci. Biotechnol. 14, 87.
|
Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed model analysis for association studies. Nat. Genet. 44, 821-824.
|
Zhou, Y., Li, G., Zhang, Y., 2022. A compressed variance component mixed model framework for detecting small and linked QTL-by-environment interactions. Brief Bioinform. 23, bbab596.
|