9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 7
Jul.  2025
Turn off MathJax
Article Contents

Identification of QTL-by-environment interaction by controlling polygenic background effect

doi: 10.1016/j.jgg.2025.01.003
Funds:

This work was supported by the National Key Research and Development Programs of China (2024YFF1000100 and 2021YFD1301102), the National Natural Science Foundation of China (32172702), the State Key Laboratory of Animal Biotech Breeding (XQSWYZQZ-KFYX-4), Zaozhuang Elite Industrial Innovation Program, and Agricultural Science and Technology Innovation Program (ASTIP-IAS-TS-6) to F. Z.. The project was also supported by the United States National Science Foundation (NSF) Collaborative Research Grant (DBI-1458515) to S. X.

  • Received Date: 2024-07-23
  • Accepted Date: 2025-01-02
  • Rev Recd Date: 2024-12-30
  • Available Online: 2025-07-11
  • Publish Date: 2025-01-11
  • The quantitative trait loci (QTL)-by-environment (Q × E) interaction effect is hard to detect because there are no effective ways to control the genomic background. In this study, we propose a linear mixed model that simultaneously analyzes data from multiple environments to detect Q × E interactions. This model incorporates two different kinship matrices derived from the genome-wide markers to control both main and interaction polygenic background effects. Simulation studies demonstrate that our approach is more powerful than the meta-analysis and inclusive composite interval mapping methods. We further analyze four agronomic traits of rice across four environments. A main effect QTL is identified for 1000-grain weight (KGW), while no QTL are found for tiller number. Additionally, a large QTL with a significant Q × E interaction is detected on chromosome 7 affecting grain number, yield, and KGW. This region harbors two important genes, PROG1 and Ghd7. Furthermore, we apply our mixed model to analyze lodging in barley across six environments. The six regions exhibiting Q × E interaction effects identified by our approach overlap with the SNPs previously identified using EM and MCMC-based Bayesian methods, further validating the robustness of our approach. Both simulation studies and empirical data analyses show that our method outperforms all other methods compared.
  • loading
  • Boer, M.P., Deanne, W., Lizhi, F., Podlich, D.W., Lang, L., Mark, C., Eeuwijk, F.A., Van, 2007. A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177, 1801-1813.
    Butler, D.G., Cullis, B.R., Gilmour, A.R., Gogel, B.J., Thompson, R., 2023. ASReml-R reference manual version 4.2. VSN International Ltd, https://asreml.kb.vsni.co.uk.
    Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y., Xia, R., 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant. 16, 1733-1742.
    Chen, X., Zhao, F., Xu, S., 2010. Mapping environment-specific quantitative trait loci. Genetics 186, 1053-1066.
    Cuevas, J., Crossa, J., Soberanis, V., Perez-Elizalde, S., Perez-Rodriguez, P., Campos, G.D.L., Montesinos-lopez, O.A., Burgueno, J., 2016. Genomic prediction of genotype× environment interaction kernel regression models. Plant Genome 9, https://doi.org/10.3835/plantgenome2016.03.0024.
    de los Campos, G., Sorensen, D., Gianola, D., 2015. Genomic heritability: what is it? PLoS Genet. 11, e1005048.
    Evangelou, E., Ioannidis, J.P.A., 2013. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379-389.
    Fisher, R.A., 1932. Statistical methods for research workers. 4th edition. London: Oliver and Boyd.
    Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D., Kleinhofs, A., 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor. Appl. Genet. 87, 392-401.
    Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., Zhang, Q., 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. U. S. A. 100, 2574-2579.
    Hua, J., Xing, Y., Xu, C., Sun, X., Yu, S., Zhang, Q., 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885-1895.
    Ishikawa, S., Maekawa, M., Arite, T., Onishi, K., Takamure, I., Kyozuka, J., 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol. 46, 79-86.
    Jin, J., Huang, W., Jp, Yang, J., Shi, M., Zhu, M., Luo, D., Lin, H., 2008. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365-1369.
    Kang, E.Y., Han, B., Furlotte, N., Joo, J.W.J., Shih, D., Davis, R.C., Lusis, A.J., Eskin, E., 2014. Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice. PLoS Genet. 10, e1004022.
    Li, M., Shi, L., MachHugh, D.E., Wang, X., Tian, J., Wang, L., Deng, Y., Wang, L., Zhao, F., 2025a. Genomic prediction based on unbiased estimation of the genomic relationship matrix in pigs. Animal (In Press), https://doi.org/10.1016/j.animal.2024.101402.
    Li, M., Tall, T., MachHugh, D.E., Chen, L., Garrick, D., Wang, L., Zhao, F., 2025b. KPRR: A novel machine learning approach for effectively capturing nonadditive effects in genomic prediction. Brief Bioinform. 26, bbae683.
    Li, S., Wang, J., Zhang, L., 2015. Inclusive composite interval mapping of QTL by environment interactions in biparental populations. PLoS ONE 10, e0132414.
    Liu, J., Chen, J., Zheng, X., Wu, F., Lin, Q., Heng, Y., Tian, P., Cheng, Z., Yu, X., Zhou, K., 2017. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat. Plants 3, 17043.
    Patterson, H.D., Thompson, R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545-554.
    Piepho, H.P., 2000. A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156, 2043.
    SAS Institute, 2009. SAS 9.4 product documentation. SAS Institute, Cary, NC, USA.
    Tan, L., Li, X., Liu, F., Sun, X., Li, C., Zhu, Z., Fu, Y., Cai, H., Wang, X., Xie, D., 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 40, 1360.
    VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91, 4414-4423.
    Wang, S.B., Wen, Y.J., Ren, W.L., Ni, Y.L., Zhang, J., Feng, J.Y., Zhang, Y.M., 2016. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci. Rep. 6, 29951.
    Wen, Y.J., Zhang, Y.W., Zhang, J., Feng, J.Y., Dunwell, J.M., Zhang, Y.M., 2019. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform. 20, 1913-1924.
    Xing, Y., Tan, Y., Hua, J., Sun, X., Xu, C., Zhang, Q., 2002. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet. 105, 248-257.
    Xu, S., 2013. Mapping quantitative trait Loci by controlling polygenic background effects. Genetics 195, 1209-1222.
    Xu, S., Xu, Y., Gong, L., Zhang, Q., 2016. Metabolomic prediction of yield in hybrid rice. Plant J. 88, 219-227.
    Xue, W., Xing, Y., Weng, X., Yu, Z., Tang, W., Lei, W., Zhou, H., Yu, S., Xu, C., Li, X., 2009. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761-767.
    Yu, H., Xie, W., Wang, J., Xing, Y., Xu, C., Li, X., Xiao, J., Zhang, Q., 2011. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PloS ONE 6, e17595.
    Zaman, M.R., Paul, D.N.R., Akhter, N., Howlader, M.H., Kabir, M.S., 2006. Chi-square mixture of Chi-square distributions. J. Appl. Sci. 6, 243-246.
    Zhao, F., Xu, S., 2012a. An expectation and maximization algorithm for estimating Q×E interaction effects. Theor. Appl. Genet. 124, 1375-1387.
    Zhao, F., Xu, S., 2012b. Genotype by environment interaction of quantitative traits: A case study in barley. G3 2, 779-788.
    Zhao, F., Zhang, P., Wang, X., Akdemir, D., Garrick, D., He, J., Wang, L., 2023. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement. J. Anim. Sci. Biotechnol. 14, 87.
    Zhou, X., Stephens, M., 2012. Genome-wide efficient mixed model analysis for association studies. Nat. Genet. 44, 821-824.
    Zhou, Y., Li, G., Zhang, Y., 2022. A compressed variance component mixed model framework for detecting small and linked QTL-by-environment interactions. Brief Bioinform. 23, bbab596.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return