Ali, M.F., Muday, G.K., 2024. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant Cell Environ. 47, 1592-1605.
|
Ali, S., Tyagi, A., Bae, H., 2023. ROS interplay between plant growth and stress biology: Challenges and future perspectives. Plant Physiol. Biochem. 203, 108032.
|
Astier, J., Rasul, S., Koen, E., Manzoor, H., Besson-Bard, A., Lamotte, O., Jeandroz, S., Durner, J., Lindermayr, C., Wendehenne, D., 2011. S-nitrosylation: An emerging post-translational protein modification in plants. Plant Sci. 181, 527-533.
|
Bassot, A., Chen, J., Simmen, T., 2021. Post-translational modification of cysteines: A key determinant of endoplasmic reticulum-mitochondria contacts (MERCs). Contact (Thousand Oaks) 4, 25152564211001213.
|
Begara-Morales, J.C., Sanchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Perez, C., Lopez-Jaramillo, J., Padilla, M.N., Carreras, A., Corpas, F.J., Barroso, J.B., 2014. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 65, 527-538.
|
Besson-Bard, A., Pugin, A., Wendehenne, D., 2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59, 21-39.
|
Bi, G., Hu, M., Fu, L., Zhang, X., Zuo, J., Li, J., Yang, J., Zhou, J.M., 2022. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat. Plants 8, 1160-1175.
|
Borg, M., Twell, D., 2010. Life after meiosis: patterning the angiosperm male gametophyte. Biochem. Soc. Trans. 38, 577-582.
|
Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M.A., Fayos, J., Belles, J.M., Rodriguez, P.L., Serrano, R., 2007. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J. 52, 1052-1065.
|
Cao, L., Karapetyan, S., Yoo, H., Chen, T., Mwimba, M., Zhang, X., Dong, X., 2024. H2O2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 385, 1211-1217.
|
Chen, L., Wu, R., Feng, J., Feng, T., Wang, C., Hu, J., Zhan, N., Li, Y., Ma, X., Ren, B., et al., 2020. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev. Cell 53, 444-457.
|
Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J., et al., 2009. The Arabidopsis PARAQUAT RESISTENT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 19, 1377-1387.
|
Considine, M.J., Sandalio, L.M., Foyer, C.H., 2015. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann. Bot. 116, 469-473.
|
De Smet, B., Willems, P., Fernandez-Fernandez, A.D., Alseekh, S., Fernie, A.R., Messens, J., Van Breusegem, F., 2019. In vivo detection of protein cysteine sulfenylation in plastids. Plant J. 97, 765-778.
|
Dresselhaus, T., Franklin-Tong, N., 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6, 1018-1036.
|
Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., Cheung, A.Y., 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129.
|
Duan, Q., Liu, M.J., Kita, D., Jordan, S.S., Yeh, F.J., Yvon, R., Carpenter, H., Federico, A.N., Garcia-Valencia, L.E., Eyles, S.J., et al., 2020. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566.
|
Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., Loake, G.J., 2005. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U. S. A. 102, 8054-8059.
|
Feng, J., Chen, L., Zuo, J., 2019. Protein S-nitrosylation in plants: Current progresses and challenges. J. Integr. Plant Biol. 61, 1206-1223.
|
Fernandez-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K., Lorenzo, O., 2011. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. U. S. A. 108, 18506-18511.
|
Guerra, D., Ballard, K., Truebridge, I., Vierling, E., 2016. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55, 2452-2464.
|
Gupta, K.J., Kaladhar, V.C., Fitzpatrick, T.B., Fernie, A.R., Moeller, I.M., Loake, G.J., 2022. Nitric oxide regulation of plant metabolism. Mol. Plant 15, 228-242.
|
Hater, F., Nakel, T., Gross-Hardt, R., 2020. Reproductive multitasking: The female gametophyte. Annu. Rev. Plant Biol. 71, 517-546.
|
Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S., 2005. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150-166.
|
Higashiyama, T., Yang, W.C., 2017. Gametophytic pollen tube guidance: Attractant peptides, gametic controls, and receptors. Plant Physiol. 173, 112-121.
|
Hourihan, J.M., Moronetti Mazzeo, L.E., Fernandez-Cardenas, L.P., Blackwell, T.K., 2016. Cysteine sulfenylation directs IRE-1 to activate the SKN-1/Nrf2 antioxidant response. Mol. Cell 63, 553-566.
|
Huang, J., Willems, P., Wei, B., Tian, C., Ferreira, R.B., Bodra, N., Martinez Gache, S.A., Wahni, K., Liu, K., Vertommen, D., et al., 2019. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc. Natl. Acad. Sci. U. S. A. 116, 21256-21261.
|
Huang, J., Yang, L., Yang, L., Wu, X., Cui, X., Zhang, L., Hui, J., Zhao, Y., Yang, H., Liu, S., et al., 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614, 303-308.
|
Jing, H., Yang, X., Emenecker, R.J., Feng, J., Zhang, J., Figueiredo, M.R.A., Chaisupa, P., Wright, R.C., Holehouse, A.S., Strader, L.C., et al., 2023. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J. Genet. Genomics 50, 473–485.
|
Keyster, M., Klein, A., Egbichi, I., Jacobs, A., Ludidi, N., 2011. Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signal. Behav. 6, 956-961.
|
Kolbert, Z., Molnai, A., Olah, D., Feigl, G., Horvath, E., Erdei, L., Ordog, A., Rudolf, E., Barth, T., Lindermayr, C., 2019. S-nitrosothiol signaling is involved in regulating hydrogen peroxide metabolism of Zinc-stressed Arabidopsis. Plant Cell Physiol. 60, 2449-2463.
|
Kovacs, I., Holzmeister, C., Wirtz, M., Geerlof, A., Frohlich, T., Romling, G., Kuruthukulangarakoola, G.T., Linster, E., Hell, R., Arnold, G.J., et al., 2016. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front. Plant Sci. 7, 1669.
|
Kubienova, L., Kopecny, D., Tylichova, M., Briozzo, P., Skopalova, J., Sebela, M., Navratil, M., Tache, R., Luhova, L., Barroso, J.B., et al., 2013. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie 95, 889-902.
|
Kwon, E., Feechan, A., Yun, B.W., Hwang, B.H., Pallas, J.A., Kang, J.G., Loake, G.J., 2012. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236, 887-900.
|
Lee, U., Wie, C., Fernandez, B.O., Feelisch, M., Vierling, E., 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20, 786-802.
|
Leitner, M., Vandelle, E., Gaupels, F., Bellin, D., Delledonne, M., 2009. NO signals in the haze: Nitric oxide signalling in plant defence. Curr. Opin. Plant Biol. 12, 451-458.
|
Levesque-Lemay, M., Chabot, D., Hubbard, K., Chan, J.K., Miller, S., Robert, L.S., 2016. Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat. New Phytol. 209, 691-704.
|
Li, Y., Chen, L., Mu, J., Zuo, J., 2013. LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol. 163, 1059-1070.
|
Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Liu, L., Hu, B., Yang, F., Loake, G.J., Chu, C., 2012. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 158, 451-464.
|
Lindermayr, C., 2018. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic. Biol. Med. 122, 110-115.
|
Liu, C., Shen, L., Xiao, Y., Vyshedsky, D., Peng, C., Sun, X., Liu, Z., Cheng, L., Zhang, H., Han, Z., et al., 2021. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 372, 171-175.
|
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J.S., 2001. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490-494.
|
Liu, W.C., Song, R.F., Qiu, Y.M., Zheng, S.Q., Li, T.T., Wu, Y., Song, C.P., Lu, Y.T., Yuan, H.M., 2022. Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis. Dev. Cell 57, 1883-1898.
|
Lo Conte, M., Carroll, K.S., 2013. The redox biochemistry of protein sulfenylation and sulfinylation. J. Biol. Chem. 288, 26480-26488.
|
Lora, J., Yang, X., Tucker, M.R., 2019. Establishing a framework for female germline initiation in the plant ovule. J. Exp. Bot. 70, 2937-2949.
|
Lundberg, J.O., Weitzberg, E., 2022. Nitric oxide signaling in health and disease. Cell 185, 2853-2878.
|
Ma, T., Tan, J.R., Lu, J.Y., Li, S., Zhang, Y., 2024. S-acylation of YKT61 modulates its unconventional participation in the formation of SNARE complexes in Arabidopsis. J. Genet. Genomics 51, 1079–1088.
|
Martin, M.V., Distefano, A.M., Zabaleta, E.J., Pagnussat, G.C., 2013a. New insights into the functional roles of reactive oxygen species during embryo sac development and fertilization in Arabidopsis thaliana. Plant Signal. Behav. 8, e25714.
|
Martin, M.V., Fiol, D.F., Sundaresan, V., Zabaleta, E.J., Pagnussat, G.C., 2013b. oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell 25, 1573-1591.
|
Meng, J.G., Xu, Y.J., Wang, W.Q., Yang, F., Chen, S.Y., Jia, P.F., Yang, W.C., Li, H.J., 2023. Central-cell-produced attractants control fertilization recovery. Cell 186, 3593-3605.
|
Meng, J.G., Zhang, M.X., Yang, W.C., Li, H.J., 2019. TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. Sci. China Life Sci. 62, 1413-1419.
|
Mittler, R., 2017. ROS are good. Trends Plant Sci. 22, 11-19.
|
Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388-395.
|
Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., et al., 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357-361.
|
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., Mauch, F., 2007. Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49, 159-172.
|
Paulsen, C.E., Carroll, K.S., 2013. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633-4679.
|
Perez-Riverol, Y., Bai, J., Bandla, C., Garcia-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al., 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic. Acids Res. 50, D543-D552.
|
Pratibha, P., Singh, S.K., Srinivasan, R., Bhat, S.R., Sreenivasulu, Y., 2017. Gametophyte development needs mitochondrial coproporphyrinogen III oxidase function. Plant Physiol. 174, 258-275.
|
Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50, 2-18.
|
Roos, G., Messens, J., 2011. Protein sulfenic acid formation: From cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314-326.
|
Shi, D.Q., Yang, W.C., 2011. Ovule development in Arabidopsis: progress and challenge. Curr. Opin. Plant Biol. 14, 74-80.
|
Shi, Y.F., Wang, D.L., Wang, C., Culler, A.H., Kreiser, M.A., Suresh, J., Cohen, J.D., Pan, J., Baker, B., Liu, J.Z., 2015. Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol. Plant 8, 1350-1365.
|
Sies, H., Jones, D.P., 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363-383.
|
Smirnova, A.V., Matveyeva, N.P., Yermakov, I.P., 2014. Reactive oxygen species are involved in regulation of pollen wall cytomechanics. Plant Biol. (Stuttg) 16, 252-257.
|
Sundaresan, V., Alandete-Saez, M., 2010. Pattern formation in miniature: the female gametophyte of flowering plants. Development 137, 179-189.
|
Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., et al., 2018. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat. Commun. 9, 1063.
|
Ticha, T., Lochman, J., Cincalova, L., Luhova, L., Petrivalsky, M., 2017. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun. 494, 27-33.
|
Turkan, I., 2018. ROS and RNS: key signalling molecules in plants. J. Exp. Bot. 69, 3313-3315.
|
Wang, J., Guo, X., Chen, Y., Liu, T., Zhu, J., Xu, S., Vierling, E., 2024a. Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions. Plant Cell 36, 2201-2218.
|
Wang, W.Q., Meng, J.G., Yang, F., Xu, Y.J., Li, S.Z., Li, H.J., 2024b. A non-defensin peptide NPA1 attracts pollen tube in Arabidopsis. Seed Biology 3, e003.
|
Wang, Y., Chu, C., 2020. S-nitrosylation control of ROS and RNS homeostasis in plants: The switching function of catalase. Mol. Plant 13, 946-948.
|
Wang, Y.J., Bian, Y., Luo, J., Lu, M., Xiong, Y., Guo, S.Y., Yin, H.Y., Lin, X., Li, Q., Chang, C.C.Y., et al., 2017. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat. Cell Biol. 19, 808-819.
|
Wani, K.I., Naeem, M., Castroverde, C.D.M., Kalaji, H.M., Albaqami, M., Aftab, T., 2021. Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int. J. Mol. Sci. 22, 9656.
|
Waszczak, C., Akter, S., Jacques, S., Huang, J., Messens, J., Van Breusegem, F., 2015. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66, 2923-2934.
|
Wilson, Z.A., Song, J., Taylor, B., Yang, C., 2011. The final split: the regulation of anther dehiscence. J. Exp. Bot. 62, 1633-1649.
|
Xu, S., Guerra, D., Lee, U., Vierling, E., 2013. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 4, 430.
|
Xue, L., Li, S., Sheng, H., Feng, H., Xu, S., An, L., 2007. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in Cyanobacterium. Curr. Microbiol. 55, 294-301.
|
Yang, H., Mu, J., Chen, L., Feng, J., Hu, J., Li, L., Zhou, J.M., Zuo, J., 2015. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol. 167, 1604-1615.
|
Yang, W.C., Shi, D.Q., Chen, Y.H., 2010. Female gametophyte development in flowering plants. Annu. Rev. Plant Biol. 61, 89-108.
|
Yang, R., Yang, Z., Xing, M., Jing, Y., Zhang, Y., Zhang, K., Zhou, Y., Zhao, H., Qiao, W., Sun, J., 2023. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging. J. Genet. Genomics 50, 861–871.
|
Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., et al., 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264-268.
|
Zeng, J., Dong, Z., Wu, H., Tian, Z., Zhao, Z., 2017. Redox regulation of plant stem cell fate. EMBO J. 36, 2844-2855.
|
Zhai, X., Bai, J., Xu, W., Yang, X., Jia, Z., Xia, W., Wu, X., Liang, Q., Li, B., Jia, N., 2023. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. Plant J. 115, 1677-1698.
|
Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., et al., 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol. Cell 71, 142-154.
|
Zhang, M.X., Zhu, S.S., Xu, Y.C., Guo, Y.L., Yang, W.C., Li, H.J., 2020. Transcriptional repression specifies the central cell for double fertilization. Proc. Natl. Acad. Sci. U. S. A. 117, 6231-6236.
|
Zhong, S., Liu, M., Wang, Z., Huang, Q., Hou, S., Xu, Y.C., Ge, Z., Song, Z., Huang, J., Qiu, X., et al., 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, eaau9564.
|
Zhou, H., Huang, J., Willems, P., Van Breusegem, F., Xie, Y., 2023. Cysteine thiol-based post-translational modification: What do we know about transcription factors? Trends Plant Sci. 28, 415-428.
|