9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 7
Jul.  2025
Turn off MathJax
Article Contents

Establishing a semi-homology-directed recombination method for precision gene integration in axolotls

doi: 10.1016/j.jgg.2025.03.001
Funds:

This work was supported by the National Key R&D Program of China (2021YFA0805000, 2023YFA1800600, 2019YFE0106700), the National Natural Science Foundation of China (92268114, 31970782, 32070819), the High-level Hospital Construction Project of Guangdong Provincial People's Hospital (DFJHBF202103 and KJ012021012), and BGI grant (BGIRSZ20210002).

  • Received Date: 2024-09-30
  • Accepted Date: 2025-03-02
  • Rev Recd Date: 2025-03-02
  • Available Online: 2025-07-11
  • Publish Date: 2025-03-07
  • The axolotl is broadly used in regenerative, developmental, and evolutionary biology research. Targeted gene knock-in is crucial for precision transgenesis, enabling disease modeling, visualization, tracking, and functional manipulation of specific cells or genes of interest (GOIs). Existing CRISPR/Cas9-mediated homology-independent method for gene knock-in often causes “scars/indels” at integration junctions. Here, we develop a CRISPR/Cas9-mediated semi-homology-directed recombination (HDR) knock-in method using a donor construct containing a single homology arm for the precise integration of GOIs. This semi-HDR approach achieves seamless single-end integration of the Cherry reporter gene and a large inducible Cre cassette into intronless genes like Sox2 and Neurod6 in axolotls, which are challenging to modify with the homology-independent method. Additionally, we integrate the inducible Cre cassette into intron-containing loci (e.g., Nkx2.2 and FoxA2) without introducing indels via semi-HDR. GOIs are properly expressed in F0 founders, with approximately 5%–10% showing precise integration confirmed by genotyping. Furthermore, using the Nkx2.2:CreERT2 line, we fate-map spinal cord p3 neural progenitor cells, revealing that Nkx2.2+ cells adopt different lineages in development and regeneration, preferentially generating motoneurons over oligodendrocytes during regeneration. Overall, this semi-HDR method balances efficiency and precision in the integration of GOIs, providing a valuable tool for generating knock-in axolotls and potentially extending to other species.
  • loading
  • Albadri, S., Del Bene, F., Revenu, C., 2017. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods 121-122, 77-85.
    Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P., Del Bene, F., 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142-153.
    Balke-Want, H., Keerthi, V., Gkitsas, N., Mancini, A.G., Kurgan, G.L., Fowler, C., Xu, P., Liu, X., Asano, K., Patel, S., et al., 2023. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol. Cancer 22, 100.
    Banan, M., 2020. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J. Biotechnol. 308, 1-9.
    Basiri, M., Behmanesh, M., Tahamtani, Y., Khalooghi, K., Moradmand, A., Baharvand, H., 2017. The convenience of single homology arm donor DNA and CRISPR/Cas9-nickase for targeted insertion of long DNA fragment. Cell J. 18, 532-539.
    Bosch, J.A., Colbeth, R., Zirin, J., Perrimon, N., 2020. Gene knock-ins in Drosophila using homology-independent insertion of universal donor plasmids. Genetics 214, 75-89.
    Briscoe, J., Pierani, A., Jessell, T.M., Ericson, J., 2000. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435-445.
    Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T.M., Rubenstein, J.L., Ericson, J., 1999. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622-627.
    Chen, X., Du, J., Yun, S., Xue, C., Yao, Y., Rao, S., 2024. Recent advances in CRISPR-Cas9-based genome insertion technologies. Mol. Ther. Nucleic Acids 35, 102138.
    Coblitz, B., Wu, M., Shikano, S., Li, M., 2006. C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. FEBS Lett. 580, 1531-1535.
    Dessaud, E., McMahon, A.P., Briscoe, J., 2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489-2503.
    Ericson, J., Rashbass, P., Schedl, A., Brenner-Morton, S., Kawakami, A., van Heyningen, V., Jessell, T.M., Briscoe, J., 1997. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169-180.
    Fei, J.F., Knapp, D., Schuez, M., Murawala, P., Zou, Y., Singh, S.P., Drechsel, D., Tanaka, E.M., 2016. Tissue- and time-directed electroporation of CAS9 protein-gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration. NPJ Regen. Med. 1, 16002.
    Fei, J.F., Lou, W.P., Knapp, D., Murawala, P., Gerber, T., Taniguchi, Y., Nowoshilow, S., Khattak, S., Tanaka, E.M., 2018. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat. Protoc. 13, 2908-2943.
    Fei, J.F., Schuez, M., Knapp, D., Taniguchi, Y., Drechsel, D.N., Tanaka, E.M., 2017. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc. Natl. Acad. Sci. U. S. A. 114, 12501-12506.
    Fei, J.F., Schuez, M., Tazaki, A., Taniguchi, Y., Roensch, K., Tanaka, E.M., 2014. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep. 3, 444-459.
    Fogarty, M., Richardson, W.D., Kessaris, N., 2005. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951-1959.
    Goodwin, L.O., Splinter, E., Davis, T.L., Urban, R., He, H., Braun, R.E., Chesler, E.J., Kumar, V., van Min, M., Ndukum, J., et al., 2019. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 29, 494-505.
    Gotoh, H., Ono, K., Nomura, T., Takebayashi, H., Harada, H., Nakamura, H., Ikenaka, K., 2012. Nkx2.2+ progenitors generate somatic motoneurons in the chick spinal cord. PLoS One 7, e51581.
    Gotoh, H., Ono, K., Takebayashi, H., Harada, H., Nakamura, H., Ikenaka, K., 2011. Genetically-defined lineage tracing of Nkx2.2-expressing cells in chick spinal cord. Dev. Biol. 349, 504-511.
    Gratz, S.J., Ukken, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M., O'Connor-Giles, K.M., 2014. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961-971.
    Gu, S., Li, J., Li, S., Cao, J., Bu, J., Ren, Y., Du, W., Chen, Z., Xu, C., Wang, M., et al., 2021. Efficient replacement of long DNA fragments via non-homologous end joining at non-coding regions. J. Mol. Cell Biol. 13, 75-77.
    Haas, B.J., Whited, J.L., 2017. Advances in decoding axolotl limb regeneration. Trends Genet. 33, 553-565.
    Han, B., Zhang, Y., Bi, X., Zhou, Y., Krueger, C.J., Hu, X., Zhu, Z., Tong, X., Zhang, B., 2021. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 12, 39-56.
    He, W., Zhang, L., Villarreal, O.D., Fu, R., Bedford, E., Dou, J., Patel, A.Y., Bedford, M.T., Shi, X., Chen, T., et al., 2019. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nat. Commun. 10, 4541.
    He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., You, W., Zhao, H., Ren, J., Feng, B., 2016. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85.
    Hoshijima, K., Jurynec, M.J., Grunwald, D.J., 2016. Precise editing of the zebrafish genome made simple and efficient. Dev. Cell 36, 654-667.
    Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229.
    Irion, U., Krauss, J., Nusslein-Volhard, C., 2014. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827-4830.
    Jarrar, W., Vauti, F., Arnold, H.H., Holz, A., 2015. Generation of a Nkx2.2(Cre) knock-in mouse line: analysis of cell lineages in the central nervous system. Differentiation 89, 70-76.
    Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.
    Jung, C.J., Zhang, J., Trenchard, E., Lloyd, K.C., West, D.B., Rosen, B., de Jong, P.J., 2017. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Res. 26, 263-277.
    Kawaguchi, A., Wang, J., Knapp, D., Murawala, P., Nowoshilow, S., Masselink, W., Taniguchi-Sugiura, Y., Fei, J.F., Tanaka, E.M., 2024. A chromatin code for limb segment identity in axolotl limb regeneration. Dev. Cell 59, 2239-2253.
    Kessaris, N., Pringle, N., Richardson, W.D., 2001. Ventral neurogenesis and the neuron-glial switch. Neuron 31, 677-680.
    Khattak, S., Murawala, P., Andreas, H., Kappert, V., Schuez, M., Sandoval-Guzman, T., Crawford, K., Tanaka, E.M., 2014. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 9, 529-540.
    Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H.H., Tanaka, E.M., 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60-65.
    Li, J., Li, H.Y., Gu, S.Y., Zi, H.X., Jiang, L., Du, J.L., 2020. One-step generation of zebrafish carrying a conditional knockout-knockin visible switch via CRISPR/Cas9-mediated intron targeting. Sci. China Life Sci. 63, 59-67.
    Li, J., Zhang, B.B., Ren, Y.G., Gu, S.Y., Xiang, Y.H., Du, J.L., 2015. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res. 25, 634-637.
    Liu, J., Li, W., Jin, X., Lin, F., Han, J., Zhang, Y., 2023. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun. Biol. 6, 1300.
    Liu, K., Meng, X., Liu, Z., Tang, M., Lv, Z., Huang, X., Jin, H., Han, X., Liu, X., Pu, W., et al., 2024. Tracing the origin of alveolar stem cells in lung repair and regeneration. Cell 187, 2428-2445.
    Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., Rowitch, D.H., 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75-86.
    Luo, J.J., Bian, W.P., Liu, Y., Huang, H.Y., Yin, Q., Yang, X.J., Pei, D.S., 2018. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy. FASEB J. 32, 5132-5142.
    Mathew, S.M., 2023. Strategies for generation of mice via CRISPR/HDR-mediated knock-in. Mol. Biol. Rep. 50, 3189-3204.
    McHedlishvili, L., Epperlein, H.H., Telzerow, A., Tanaka, E.M., 2007. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134, 2083-2093.
    Mircetic, J., Steinebrunner, I., Ding, L., Fei, J.F., Bogdanova, A., Drechsel, D., Buchholz, F., 2017. Purified Cas9 fusion proteins for advanced genome manipulation. Small Methods 1.
    Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., et al., 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560.
    Natarajan, N., Abbas, Y., Bryant, D.M., Gonzalez-Rosa, J.M., Sharpe, M., Uygur, A., Cocco-Delgado, L.H., Ho, N.N., Gerard, N.P., Gerard, C.J., et al., 2018. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 137, 2152-2165.
    Nowoshilow, S., Tanaka, E.M., 2020. Introducing www.axolotl-omics.org - an integrated -omics data portal for the axolotl research community. Exp. Cell Res. 394, 112143.
    Pan, X.Y., Zeng, Y.Y., Liu, Y.M., Fei, J.F., 2023. Resolving vertebrate brain evolution through salamander brain development and regeneration. Zool. Res. 44, 219-222.
    Pringle, N.P., Guthrie, S., Lumsden, A., Richardson, W.D., 1998. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883-893.
    Qi, Y., Cai, J., Wu, Y., Wu, R., Lee, J., Fu, H., Rao, M., Sussel, L., Rubenstein, J., Qiu, M., 2001. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723-2733.
    Rao, M.S., Mayer-Proschel, M., 1997. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48-63.
    Schnapp, E., Kragl, M., Rubin, L., Tanaka, E.M., 2005. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132, 3243-3253.
    Schwab, M.H., Druffel-Augustin, S., Gass, P., Jung, M., Klugmann, M., Bartholomae, A., Rossner, M.J., Nave, K.A., 1998. Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J. Neurosci. 18, 1408-1418.
    Sharma, S., Toledo, O., Hedden, M., Lyon, K.F., Brooks, S.B., David, R.P., Limtong, J., Newsome, J.M., Novakovic, N., Rajasekaran, S., et al., 2016. The functional human C-terminome. PLoS One 11, e0152731.
    Shi, Z., Wang, F., Cui, Y., Liu, Z., Guo, X., Zhang, Y., Deng, Y., Zhao, H., Chen, Y., 2015. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J. 29, 4914-4923.
    Shin, J., Chen, J., Solnica-Krezel, L., 2014. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141, 3807-3818.
    Shin, M., Yin, H.M., Shih, Y.H., Nozaki, T., Portman, D., Toles, B., Kolb, A., Luk, K., Isogai, S., Ishida, K., et al., 2023. Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev. Cell 58, 2614-2626.
    Sobkow, L., Epperlein, H.H., Herklotz, S., Straube, W.L., Tanaka, E.M., 2006. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev. Biol. 290, 386-397.
    Soula, C., Danesin, C., Kan, P., Grob, M., Poncet, C., Cochard, P., 2001. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128, 1369-1379.
    Stephenson, A.A., Nicolau, S., Vetter, T.A., Dufresne, G.P., Frair, E.C., Sarff, J.E., Wheeler, G.L., Kelly, B.J., White, P., Flanigan, K.M., 2023. CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice. Mol. Ther. Methods Clin. Dev. 30, 486-499.
    Sun, A.X., Londono, R., Hudnall, M.L., Tuan, R.S., Lozito, T.P., 2018. Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders. Proc. Natl. Acad. Sci. U. S. A. 115, E8256-E8265.
    Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al., 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149.
    Uetzmann, L., Burtscher, I., Lickert, H., 2008. A mouse line expressing Foxa2-driven Cre recombinase in node, notochord, floorplate, and endoderm. Genesis 46, 515-522.
    Wang, X., Zhu, J., Wang, H., Deng, W., Jiao, S., Wang, Y., He, M., Zhang, F., Liu, T., Hao, Y., et al., 2023. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918.
    Wei, X., Fu, S., Li, H., Liu, Y., Wang, S., Feng, W., Yang, Y., Liu, X., Zeng, Y.Y., Cheng, M., et al., 2022. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444.
    Xue, C., Greene, E.C., 2021. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 37, 639-656.
    Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., Jaenisch, R., 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379.
    Yu, Z., Chen, H., Liu, J., Zhang, H., Yan, Y., Zhu, N., Guo, Y., Yang, B., Chang, Y., Dai, F., et al., 2014. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol. Open 3, 271-280.
    Yun, M.H., 2015. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci. 16, 25392-25432.
    Zhang, C., He, X., Kwok, Y.K., Wang, F., Xue, J., Zhao, H., Suen, K.W., Wang, C.C., Ren, J., Chen, G.G., et al., 2018. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. BMC Biol. 16, 151.
    Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W., et al., 2017. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35.
    Zhou, Q., Choi, G., Anderson, D.J., 2001. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791-807.
    Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., et al., 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329-331.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return