Albadri, S., Del Bene, F., Revenu, C., 2017. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Methods 121-122, 77-85.
|
Auer, T.O., Duroure, K., De Cian, A., Concordet, J.P., Del Bene, F., 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142-153.
|
Balke-Want, H., Keerthi, V., Gkitsas, N., Mancini, A.G., Kurgan, G.L., Fowler, C., Xu, P., Liu, X., Asano, K., Patel, S., et al., 2023. Homology-independent targeted insertion (HITI) enables guided CAR knock-in and efficient clinical scale CAR-T cell manufacturing. Mol. Cancer 22, 100.
|
Banan, M., 2020. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J. Biotechnol. 308, 1-9.
|
Basiri, M., Behmanesh, M., Tahamtani, Y., Khalooghi, K., Moradmand, A., Baharvand, H., 2017. The convenience of single homology arm donor DNA and CRISPR/Cas9-nickase for targeted insertion of long DNA fragment. Cell J. 18, 532-539.
|
Bosch, J.A., Colbeth, R., Zirin, J., Perrimon, N., 2020. Gene knock-ins in Drosophila using homology-independent insertion of universal donor plasmids. Genetics 214, 75-89.
|
Briscoe, J., Pierani, A., Jessell, T.M., Ericson, J., 2000. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435-445.
|
Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T.M., Rubenstein, J.L., Ericson, J., 1999. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622-627.
|
Chen, X., Du, J., Yun, S., Xue, C., Yao, Y., Rao, S., 2024. Recent advances in CRISPR-Cas9-based genome insertion technologies. Mol. Ther. Nucleic Acids 35, 102138.
|
Coblitz, B., Wu, M., Shikano, S., Li, M., 2006. C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. FEBS Lett. 580, 1531-1535.
|
Dessaud, E., McMahon, A.P., Briscoe, J., 2008. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489-2503.
|
Ericson, J., Rashbass, P., Schedl, A., Brenner-Morton, S., Kawakami, A., van Heyningen, V., Jessell, T.M., Briscoe, J., 1997. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169-180.
|
Fei, J.F., Knapp, D., Schuez, M., Murawala, P., Zou, Y., Singh, S.P., Drechsel, D., Tanaka, E.M., 2016. Tissue- and time-directed electroporation of CAS9 protein-gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration. NPJ Regen. Med. 1, 16002.
|
Fei, J.F., Lou, W.P., Knapp, D., Murawala, P., Gerber, T., Taniguchi, Y., Nowoshilow, S., Khattak, S., Tanaka, E.M., 2018. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat. Protoc. 13, 2908-2943.
|
Fei, J.F., Schuez, M., Knapp, D., Taniguchi, Y., Drechsel, D.N., Tanaka, E.M., 2017. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc. Natl. Acad. Sci. U. S. A. 114, 12501-12506.
|
Fei, J.F., Schuez, M., Tazaki, A., Taniguchi, Y., Roensch, K., Tanaka, E.M., 2014. CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep. 3, 444-459.
|
Fogarty, M., Richardson, W.D., Kessaris, N., 2005. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951-1959.
|
Goodwin, L.O., Splinter, E., Davis, T.L., Urban, R., He, H., Braun, R.E., Chesler, E.J., Kumar, V., van Min, M., Ndukum, J., et al., 2019. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 29, 494-505.
|
Gotoh, H., Ono, K., Nomura, T., Takebayashi, H., Harada, H., Nakamura, H., Ikenaka, K., 2012. Nkx2.2+ progenitors generate somatic motoneurons in the chick spinal cord. PLoS One 7, e51581.
|
Gotoh, H., Ono, K., Takebayashi, H., Harada, H., Nakamura, H., Ikenaka, K., 2011. Genetically-defined lineage tracing of Nkx2.2-expressing cells in chick spinal cord. Dev. Biol. 349, 504-511.
|
Gratz, S.J., Ukken, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M., O'Connor-Giles, K.M., 2014. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196, 961-971.
|
Gu, S., Li, J., Li, S., Cao, J., Bu, J., Ren, Y., Du, W., Chen, Z., Xu, C., Wang, M., et al., 2021. Efficient replacement of long DNA fragments via non-homologous end joining at non-coding regions. J. Mol. Cell Biol. 13, 75-77.
|
Haas, B.J., Whited, J.L., 2017. Advances in decoding axolotl limb regeneration. Trends Genet. 33, 553-565.
|
Han, B., Zhang, Y., Bi, X., Zhou, Y., Krueger, C.J., Hu, X., Zhu, Z., Tong, X., Zhang, B., 2021. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators. Protein Cell 12, 39-56.
|
He, W., Zhang, L., Villarreal, O.D., Fu, R., Bedford, E., Dou, J., Patel, A.Y., Bedford, M.T., Shi, X., Chen, T., et al., 2019. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nat. Commun. 10, 4541.
|
He, X., Tan, C., Wang, F., Wang, Y., Zhou, R., Cui, D., You, W., Zhao, H., Ren, J., Feng, B., 2016. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res. 44, e85.
|
Hoshijima, K., Jurynec, M.J., Grunwald, D.J., 2016. Precise editing of the zebrafish genome made simple and efficient. Dev. Cell 36, 654-667.
|
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R., Joung, J.K., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227-229.
|
Irion, U., Krauss, J., Nusslein-Volhard, C., 2014. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141, 4827-4830.
|
Jarrar, W., Vauti, F., Arnold, H.H., Holz, A., 2015. Generation of a Nkx2.2(Cre) knock-in mouse line: analysis of cell lineages in the central nervous system. Differentiation 89, 70-76.
|
Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.
|
Jung, C.J., Zhang, J., Trenchard, E., Lloyd, K.C., West, D.B., Rosen, B., de Jong, P.J., 2017. Efficient gene targeting in mouse zygotes mediated by CRISPR/Cas9-protein. Transgenic Res. 26, 263-277.
|
Kawaguchi, A., Wang, J., Knapp, D., Murawala, P., Nowoshilow, S., Masselink, W., Taniguchi-Sugiura, Y., Fei, J.F., Tanaka, E.M., 2024. A chromatin code for limb segment identity in axolotl limb regeneration. Dev. Cell 59, 2239-2253.
|
Kessaris, N., Pringle, N., Richardson, W.D., 2001. Ventral neurogenesis and the neuron-glial switch. Neuron 31, 677-680.
|
Khattak, S., Murawala, P., Andreas, H., Kappert, V., Schuez, M., Sandoval-Guzman, T., Crawford, K., Tanaka, E.M., 2014. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 9, 529-540.
|
Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H.H., Tanaka, E.M., 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60-65.
|
Li, J., Li, H.Y., Gu, S.Y., Zi, H.X., Jiang, L., Du, J.L., 2020. One-step generation of zebrafish carrying a conditional knockout-knockin visible switch via CRISPR/Cas9-mediated intron targeting. Sci. China Life Sci. 63, 59-67.
|
Li, J., Zhang, B.B., Ren, Y.G., Gu, S.Y., Xiang, Y.H., Du, J.L., 2015. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res. 25, 634-637.
|
Liu, J., Li, W., Jin, X., Lin, F., Han, J., Zhang, Y., 2023. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun. Biol. 6, 1300.
|
Liu, K., Meng, X., Liu, Z., Tang, M., Lv, Z., Huang, X., Jin, H., Han, X., Liu, X., Pu, W., et al., 2024. Tracing the origin of alveolar stem cells in lung repair and regeneration. Cell 187, 2428-2445.
|
Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., Rowitch, D.H., 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75-86.
|
Luo, J.J., Bian, W.P., Liu, Y., Huang, H.Y., Yin, Q., Yang, X.J., Pei, D.S., 2018. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy. FASEB J. 32, 5132-5142.
|
Mathew, S.M., 2023. Strategies for generation of mice via CRISPR/HDR-mediated knock-in. Mol. Biol. Rep. 50, 3189-3204.
|
McHedlishvili, L., Epperlein, H.H., Telzerow, A., Tanaka, E.M., 2007. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 134, 2083-2093.
|
Mircetic, J., Steinebrunner, I., Ding, L., Fei, J.F., Bogdanova, A., Drechsel, D., Buchholz, F., 2017. Purified Cas9 fusion proteins for advanced genome manipulation. Small Methods 1.
|
Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., et al., 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5, 5560.
|
Natarajan, N., Abbas, Y., Bryant, D.M., Gonzalez-Rosa, J.M., Sharpe, M., Uygur, A., Cocco-Delgado, L.H., Ho, N.N., Gerard, N.P., Gerard, C.J., et al., 2018. Complement receptor C5aR1 plays an evolutionarily conserved role in successful cardiac regeneration. Circulation 137, 2152-2165.
|
Nowoshilow, S., Tanaka, E.M., 2020. Introducing www.axolotl-omics.org - an integrated -omics data portal for the axolotl research community. Exp. Cell Res. 394, 112143.
|
Pan, X.Y., Zeng, Y.Y., Liu, Y.M., Fei, J.F., 2023. Resolving vertebrate brain evolution through salamander brain development and regeneration. Zool. Res. 44, 219-222.
|
Pringle, N.P., Guthrie, S., Lumsden, A., Richardson, W.D., 1998. Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20, 883-893.
|
Qi, Y., Cai, J., Wu, Y., Wu, R., Lee, J., Fu, H., Rao, M., Sussel, L., Rubenstein, J., Qiu, M., 2001. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128, 2723-2733.
|
Rao, M.S., Mayer-Proschel, M., 1997. Glial-restricted precursors are derived from multipotent neuroepithelial stem cells. Dev. Biol. 188, 48-63.
|
Schnapp, E., Kragl, M., Rubin, L., Tanaka, E.M., 2005. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 132, 3243-3253.
|
Schwab, M.H., Druffel-Augustin, S., Gass, P., Jung, M., Klugmann, M., Bartholomae, A., Rossner, M.J., Nave, K.A., 1998. Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J. Neurosci. 18, 1408-1418.
|
Sharma, S., Toledo, O., Hedden, M., Lyon, K.F., Brooks, S.B., David, R.P., Limtong, J., Newsome, J.M., Novakovic, N., Rajasekaran, S., et al., 2016. The functional human C-terminome. PLoS One 11, e0152731.
|
Shi, Z., Wang, F., Cui, Y., Liu, Z., Guo, X., Zhang, Y., Deng, Y., Zhao, H., Chen, Y., 2015. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J. 29, 4914-4923.
|
Shin, J., Chen, J., Solnica-Krezel, L., 2014. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141, 3807-3818.
|
Shin, M., Yin, H.M., Shih, Y.H., Nozaki, T., Portman, D., Toles, B., Kolb, A., Luk, K., Isogai, S., Ishida, K., et al., 2023. Generation and application of endogenously floxed alleles for cell-specific knockout in zebrafish. Dev. Cell 58, 2614-2626.
|
Sobkow, L., Epperlein, H.H., Herklotz, S., Straube, W.L., Tanaka, E.M., 2006. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev. Biol. 290, 386-397.
|
Soula, C., Danesin, C., Kan, P., Grob, M., Poncet, C., Cochard, P., 2001. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development 128, 1369-1379.
|
Stephenson, A.A., Nicolau, S., Vetter, T.A., Dufresne, G.P., Frair, E.C., Sarff, J.E., Wheeler, G.L., Kelly, B.J., White, P., Flanigan, K.M., 2023. CRISPR-Cas9 homology-independent targeted integration of exons 1-19 restores full-length dystrophin in mice. Mol. Ther. Methods Clin. Dev. 30, 486-499.
|
Sun, A.X., Londono, R., Hudnall, M.L., Tuan, R.S., Lozito, T.P., 2018. Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders. Proc. Natl. Acad. Sci. U. S. A. 115, E8256-E8265.
|
Suzuki, K., Tsunekawa, Y., Hernandez-Benitez, R., Wu, J., Zhu, J., Kim, E.J., Hatanaka, F., Yamamoto, M., Araoka, T., Li, Z., et al., 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149.
|
Uetzmann, L., Burtscher, I., Lickert, H., 2008. A mouse line expressing Foxa2-driven Cre recombinase in node, notochord, floorplate, and endoderm. Genesis 46, 515-522.
|
Wang, X., Zhu, J., Wang, H., Deng, W., Jiao, S., Wang, Y., He, M., Zhang, F., Liu, T., Hao, Y., et al., 2023. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat. Commun. 14, 7918.
|
Wei, X., Fu, S., Li, H., Liu, Y., Wang, S., Feng, W., Yang, Y., Liu, X., Zeng, Y.Y., Cheng, M., et al., 2022. Single-cell Stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444.
|
Xue, C., Greene, E.C., 2021. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 37, 639-656.
|
Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., Jaenisch, R., 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379.
|
Yu, Z., Chen, H., Liu, J., Zhang, H., Yan, Y., Zhu, N., Guo, Y., Yang, B., Chang, Y., Dai, F., et al., 2014. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol. Open 3, 271-280.
|
Yun, M.H., 2015. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci. 16, 25392-25432.
|
Zhang, C., He, X., Kwok, Y.K., Wang, F., Xue, J., Zhao, H., Suen, K.W., Wang, C.C., Ren, J., Chen, G.G., et al., 2018. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. BMC Biol. 16, 151.
|
Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W., et al., 2017. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 18, 35.
|
Zhou, Q., Choi, G., Anderson, D.J., 2001. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791-807.
|
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., et al., 2013. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat. Methods 10, 329-331.
|