Chen, K.E., Chen, H.Y., Tseng, C.S., Tsay, Y.F., 2020. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nat. Plants 6, 1126- 1135.
|
Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T., 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297- 300.
|
Huang, X., Huang, S., Han, B., Li, J., 2022. The integrated genomics of crop domestication and breeding. Cell 185, 2828- 2839.
|
Hu, B., Wang, W., Chen, J. J., Liu, Y. Q., Chu, C., 2023. Genetic improvement toward nitrogen-use efficiency in rice: Lessons and perspectives. Mol. Plants 16, 1871- 1874.
|
Kirk, G. J. and Kronzucker, H. J., 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann. Bot. 96, 639- 646.
|
Luo, L.J., 2010. Breeding for water-saving and drought-resistance rice (WDR) in China. J. Exp. Bot. 61, 3509- 3517.
|
Luo, L., Mei, H., Yu, X., Xia, H., Chen, L., Liu, H., Zhang, A., Xu, K., Wei, H., Liu, G., et al., 2019. Water-saving and drought-resistance rice: From the concept to practice and theory. Mol. Breed. 39, 145.
|
Luo, Z., Xiong, J., Xia, H., Ma, X.S., Gao, M., Wang, L., Liu, G., Yu, X., Luo, L., 2020. Transcriptomic divergence between upland and lowland ecotypes contributes to rice adaptation to a drought-prone agroecosystem. Evol. Appl. 13, 4.
|
Luo, Z., Xia, H., Bao, Z., Wang, L., Feng, Y., Zhang, T., Xiong, J., Chen, L., Luo, L., 2022. Integrated phenotypic, phylogenomic, and evolutionary analyses indicate the earlier domestication of upland rice in China. Mol. Plant 15, 1506- 1509.
|
Sun, X., Xiong, H., Jiang, C., Zhang, D., Yang, Z., Huang, Y., Zhu, W., Ma, S., Duan, J., Wang, X., et al., 2022. Natural variation of DROT1 confers drought adaptation in upland rice. Nat. Commun.13, 4265.
|
Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., Zhang, Y., Xu, S., An, H., Chen, G., et al., 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat. Commun. 10, 5279.
|
Wang, F. and Peng, S.B., 2017. Yield potential and nitrogen use efficiency of China’s super rice. J. Integr. Agric. 16, 1000- 1008.
|
Wei, J., Zheng, Y., Feng, H., Qu, H., Fan, X., Yamaji, N., Ma, J., Xu, G., 2018. OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J. Exp. Bot. 69, 1095–1107.
|
Wing, R., Purugganan, M., Zhang, Q.F., 2018. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 19, 505- 517.
|
Xia, H., Luo, Z., Xiong, J., Ma, X., Lou, Q., Wei, H., Qiu, J., Yang, H., Liu, G., Fan, L., et al., 2019. Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. Mol. Plant 12, 170- 184.
|
Xia, H., Zhang, X.X., Liu, Y., Bi, J.G., Ma, X.S., Zhang, A.N., Liu, H., Chen, L., Zhou, S., Gao, H., et al., 2022. Blue revolution for food security under carbon neutrality: A case from the water-saving and drought-resistance rice. Mol. Plant 15, 1401- 1404.
|
Xu, G., Fan, X., Miller, A.J., 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63, 153- 182.
|
Yu, S., Ali, J., Zhou, S., Ren, G., Xie, H., Xu, J., Yu, X., Zhou, F., Peng, S., Ma, L., et al., 2021. From Green Super Rice to green agriculture: reaping the promise of functional genomics research. Mol. Plant 15, 9- 26.
|
Zhou, H., Wang, L., Yue, Y., Luo, Z., Wang, S., Zhou, L., Luo, L., Xia, H., Yan, M., 2024. Independent genetic differentiation between upland and lowland rice ecotypes within japonica and indica subspecies during their adaptations to different soil-nitrogen conditions. J. Syst. Evol. 62, 915- 927.
|