BrugmanS., 2016. The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 64, 82-92.
|
CoxJ.H., KljavinN.M., OtaN., LeonardJ., Roose-GirmaM., DiehlL., OuyangW., GhilardiN., 2012. Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol. 5, 99-109.
|
DanneC., SkerniskyteJ., MarteynB., SokolH., 2024. Neutrophils: from IBD to the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 21, 184-197.
|
de SouzaH.S.P., FiocchiC., IliopoulosD., 2017. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 14, 739-749.
|
HeG.-W., LinL., DeMartinoJ., ZhengX., StaliarovaN., DaytonT., BegthelH., van de WeteringW.J., BodewesE., van ZonJ., et al., 2022. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell 29, 1333-1345.
|
ItohM., NagafuchiA., YonemuraS., Kitani-YasudaT., TsukitaS., TsukitaS., 1993. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121, 491-502.
|
JeongD.Y., KimS., SonM.J., SonC.Y., KimJ.Y., KronbichlerA., LeeK.H., ShinJ. Il, 2019. Induction and maintenance treatment of inflammatory bowel disease: a comprehensive review. Autoimmun. Rev. 18, 439-454.
|
JinH., HuangZ., ChiY., WuM., ZhouR., ZhaoL., XuJ., ZhenF., LanY., LiL., et al., 2016. c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood 128, 415-427.
|
KrugerP., SaffarzadehM., WeberA.N.R., RieberN., RadsakM., von BernuthH., BenarafaC., RoosD., SkokowaJ., HartlD., 2015. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 11, e1004651.
|
LindemansC.A., CalafioreM., MertelsmannA.M., O'ConnorM.H., DudakovJ.A., JenqR.R., VelardiE., YoungL.F., SmithO.M., LawrenceG., et al., 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560-564.
|
OehlersS.H., FloresM.V., HallC.J., OkudaK.S., SisonJ.O., CrosierK.E., CrosierP.S., 2013. Chemically induced intestinal damage models in zebrafish larvae. Zebrafish 10, 184-193.
|
RenshawS.A., LoynesC.A., TrushellD.M.I., ElworthyS., InghamP.W., WhyteM.K.B., 2006. A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976-3978.
|
RuzinovaM.B., BenezraR., 2003. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 13, 410-418.
|
SanmarcoL.M., ChaoC.-C., WangY.-C., KenisonJ.E., LiZ., RoneJ.M., Rejano-GordilloC.M., PolonioC.M., Gutierrez-VazquezC., PiesterG., et al., 2022. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801-809.
|
ShahA.N., DaveyC.F., WhitebirchA.C., MillerA.C., MoensC.B., 2015. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods 12, 535-540.
|
StefanichE.G., RaeJ., SukumaranS., LutmanJ., LekkerkerkerA., OuyangW., WangX., LeeD., DanilenkoD.M., DiehlL., et al., 2018. Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochem. Pharmacol. 152, 224-235.
|
WuR.S., LamI.I., ClayH., DuongD.N., DeoR.C., CoughlinS.R., 2018. A rapid method for directed gene knockout for screening in G0 zebrafish. Dev. Cell 46, 112-125.
|