Aboulenain, S., Saber, A.Y., 2021. Primary Osteoarthritis.
|
Abramson, S.B., Attur, M., 2009. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 11, 227.
|
Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., et al., 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573.
|
Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., Verdine, V., Cox, D.B.T., Kellner, M.J., Regev, A., et al., 2017. RNA targeting with CRISPR-Cas13. Nature 550, 280-284.
|
Abudayyeh, O.O., Gootenberg, J.S., Franklin, B., Koob, J., Kellner, M.J., Ladha, A., Joung, J., Kirchgatterer, P., Cox, D.B.T., Zhang, F., 2019. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382-386.
|
Adikusuma, F., Piltz, S., Corbett, M.A., Turvey, M., McColl, S.R., Helbig, K.J., Beard, M.R., Hughes, J., Pomerantz, R.T., Thomas, P.Q., 2018. Large deletions induced by Cas9 cleavage. Nature 560, E8-E9.
|
Agne, M., Blank, I., Emhardt, A.J., Gabelein, C.G., Gawlas, F., Gillich, N., Gonschorek, P., Juretschke, T.J., Kramer, S.D., Louis, N., et al., 2014. Modularized CRISPR/dCas9 effector toolkit for target-specific gene regulation. ACS Synth. Biol. 3, 986-989.
|
Ajdary, M., Moosavi, M.A., Rahmati, M., Falahati, M., Mahboubi, M., Mandegary, A., Jangjoo, S., Mohammadinejad, R., Varma, R.S., 2018. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials 8, 634.
|
Al-Shayeb, B., Skopintsev, P., Soczek, K.M., Stahl, E.C., Li, Z., Groover, E., Smock, D., Eggers, A.R., Pausch, P., Cress, B.F., et al., 2022. Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell 185, 4574-4586.
|
Ala-Kokko, L., Baldwin, C.T., Moskowitz, R.W., Prockop, D.J., 1990. Single base mutation in the type II procollagen gene (COL2A1) as a cause of primary osteoarthritis associated with a mild chondrodysplasia. Proc. Natl. Acad. Sci. U. S. A. 87, 6565-6568.
|
Alanis-Lobato, G., Zohren, J., McCarthy, A., Fogarty, N.M.E., Kubikova, N., Hardman, E., Greco, M., Wells, D., Turner, J.M.A., Niakan, K.K., 2021. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos. Proc. Natl. Acad. Sci. U. S. A. 118,e2004832117.
|
Altan, Z., Sahin, Y., 2022. miR-203 suppresses pancreatic cancer cell proliferation and migration by modulating DUSP5 expression. Mol. Cell. Probes 66, 101866.
|
Altman, R.D., 2010. Early management of osteoarthritis. Am. J. Manag. Care 16 Suppl. Management, S41-S47.
|
Alves, E., Taifour, S., Dolcetti, R., Chee, J., Nowak, A.K., Gaudieri, S., Blancafort, P., 2021. Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular therapy. Mol. Ther. Methods Clin. Dev. 21, 592-606.
|
Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., Lombardo, A., 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219-232.
|
Ameye, L.G., Chee, W.S., 2006. Osteoarthritis and nutrition. From nutraceuticals to functional foods: a systematic review of the scientific evidence. Arthritis Res. Ther. 8, R127.
|
Amrani, N., Gao, X.D., Liu, P., Edraki, A., Mir, A., Ibraheim, R., Gupta, A., Sasaki, K.E., Wu, T., Donohoue, P.D., et al., 2018. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol. 19, 214.
|
Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
|
Anzalone, A.V., Gao, X.D., Podracky, C.J., Nelson, A.T., Koblan, L.W., Raguram, A., Levy, J.M., Mercer, J.A.M., Liu, D.R., 2022. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731-740.
|
Arc, O.C., Zeggini, E., Panoutsopoulou, K., Southam, L., Rayner, N.W., Day-Williams, A.G., Lopes, M.C., Boraska, V., Esko, T., Evangelou, E., et al., 2012. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380, 815-823.
|
Arden, N., Nevitt, M.C., 2006. Osteoarthritis: epidemiology. Best Pract. Res. Clin. Rheumatol. 20, 3-25.
|
Arend, W.P., Malyak, M., Guthridge, C.J., Gabay, C., 1998. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27-55.
|
Arthur, A., Zannettino, A., Gronthos, S., 2009. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J. Cell Physiol. 218, 237-245.
|
Ashraf, S., Kim, B.J., Park, S., Park, H., Lee, S.H., 2019. RHEB gene therapy maintains the chondrogenic characteristics and protects cartilage tissue from degenerative damage during experimental murine osteoarthritis. Osteoarthritis Cartilage 27, 1508-1517.
|
Bae, S., Kweon, J., Kim, H.S., Kim, J.S., 2014. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods 11, 705-706.
|
Balboa, D., Weltner, J., Eurola, S., Trokovic, R., Wartiovaara, K., Otonkoski, T., 2015. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep. 5, 448-459.
|
Banskota, S., Raguram, A., Suh, S., Du, S.W., Davis, J.R., Choi, E.H., Wang, X., Nielsen, S.C., Newby, G.A., Randolph, P.B., et al., 2022. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250-265.
|
Bao, Z.H., Jain, S., Jaroenpuntaruk, V., Zhao, H.M., 2017. Orthogonal genetic regulation in human cells using chemically induced CRISPR/Cas9 activators. ACS Synth. Biol. 6, 686-693.
|
Bassett, A., Liu, J.L., 2014. CRISPR/Cas9 mediated genome engineering in Drosophila. Methods 69, 128-136.
|
Bi, D., Yao, J., Wang, Y., Qin, G., Zhang, Y., Wang, Y., Zhao, J., 2021. CRISPR/Cas13d-mediated efficient KDM5B mRNA knockdown in porcine somatic cells and parthenogenetic embryos. Reproduction 162, 149-160.
|
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41, 7429-7437.
|
Bitton, R., 2009. The economic burden of osteoarthritis. Am. J. Manag. Care 15(8 Suppl. l), S230-S235.
|
Bodick, N., Lufkin, J., Willwerth, C., Kumar, A., Bolognese, J., Schoonmaker, C., Ballal, R., Hunter, D., Clayman, M., 2015. An intra-articular, extended-release formulation of triamcinolone acetonide prolongs and amplifies analgesic effect in patients with osteoarthritis of the knee: a randomized clinical trial. J. Bone Joint Surg. Am. 97, 877-888.
|
Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D., 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561.
|
Bonato, A., Fisch, P., Ponta, S., Fercher, D., Manninen, M., Weber, D., Eklund, K.K., Barreto, G., Zenobi-Wong, M., 2023. Engineering inflammation-resistant cartilage: bridging gene therapy and tissue engineering. Adv. Healthc. Mater., e2202271.
|
Bortoluzzi, A., Furini, F., Scire, C.A., 2018. Osteoarthritis and its management - epidemiology, nutritional aspects and environmental factors. Autoimmun. Rev. 17, 1097-1104.
|
Bosch, J.A., Birchak, G., Perrimon, N., 2021. Precise genome engineering in Drosophila using prime editing. Proc. Natl. Acad. Sci. U. S. A. 118, e2021996118.
|
Boutin, J., Rosier, J., Cappellen, D., Prat, F., Toutain, J., Pennamen, P., Bouron, J., Rooryck, C., Merlio, J.P., Lamrissi-Garcia, I., et al., 2021. CRISPR-Cas9 globin editing can induce megabase-scale copy-neutral losses of heterozygosity in hematopoietic cells. Nat. Commun. 12, 4922.
|
Bowden, A.R., Morales-Juarez, D.A., Sczaniecka-Clift, M., Agudo, M.M., Lukashchuk, N., Thomas, J.C., Jackson, S.P., 2020. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. eLife 9, e55325.
|
Brandt, K.D., Radin, E.L., Dieppe, P.A., van de Putte, L., 2006. Yet more evidence that osteoarthritis is not a cartilage disease. Ann. Rheum. Dis. 65, 1261-1264.
|
Braun, S.M.G., Kirkland, J.G., Chory, E.J., Husmann, D., Calarco, J.P., Crabtree, G.R., 2017. Rapid and reversible epigenome editing by endogenous chromatin regulators. Nat. Commun. 8, 560.
|
Brittberg, M., Gersoff, W., 2010. Cartilage Surgery: an Operative Manual, first ed. ed. Saunders.
|
Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889-895.
|
Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
|
Buchman, A., Brogan, D.J., Sun, R.C., Yang, T., Hsu, P., Akbari, O.S., 2020. Programmable RNA targeting using CasRx in flies. CRISPR J. 3, 164-176.
|
Campa, C.C., Weisbach, N.R., Santinha, A.J., Incarnato, D., Platt, R.J., 2019. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 16, 887-893.
|
Cano-Rodriguez, D., Gjaltema, R.A., Jilderda, L.J., Jellema, P., Dokter-Fokkens, J., Ruiters, M.H., Rots, M.G., 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284.
|
Cao, Y., Tang, S., Nie, X., Zhou, Z., Ruan, G., Han, W., Zhu, Z., Ding, C., 2021. Decreased miR-214-3p activates NF-kappaB pathway and aggravates osteoarthritis progression. EBioMedicine 65, 103283.
|
Caron, M.M., Emans, P.J., Coolsen, M.M., Voss, L., Surtel, D.A., Cremers, A., van Rhijn, L.W., Welting, T.J., 2012. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage 20, 1170-1178.
|
Chai, A.C., Cui, M., Chemello, F., Li, H., Chen, K., Tan, W., Atmanli, A., McAnally, J.R., Zhang, Y., Xu, L., et al., 2023. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401-411.
|
Chapman, K., Takahashi, A., Meulenbelt, I., Watson, C., Rodriguez-Lopez, J., Egli, R., Tsezou, A., Malizos, K.N., Kloppenburg, M., Shi, D., et al., 2008. A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5' UTR of GDF5 with osteoarthritis susceptibility. Hum. Mol. Genet. 17, 1497-1504.
|
Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., E, P.R.I., Lin, S., Kiani, S., Guzman, C.D., Wiegand, D.J., et al., 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326-328.
|
Che, W., Ye, S., Cai, A., Cui, X., Sun, Y., 2020. CRISPR-Cas13a targeting the enhancer RNA-SMAD7e inhibits bladder cancer development both in vitro and in vivo. Front. Mol. Biosci. 7, 607740.
|
Chemello, F., Chai, A.C., Li, H., Rodriguez-Caycedo, C., Sanchez-Ortiz, E., Atmanli, A., Mireault, A.A., Liu, N., Bassel-Duby, R., Olson, E.N., 2021. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 7, eabg4910.
|
Chen, J.S., Dagdas, Y.S., Kleinstiver, B.P., Welch, M.M., Sousa, A.A., Harrington, L.B., Sternberg, S.H., Joung, J.K., Yildiz, A., Doudna, J.A., 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410.
|
Chen, L.F., Lin, Y.T., Gallegos, D.A., Hazlett, M.F., Gomez-Schiavon, M., Yang, M.G., Kalmeta, B., Zhou, A.S., Holtzman, L., Gersbach, C.A., et al., 2019. Enhancer histone acetylation modulates transcriptional bursting dynamics of neuronal activity-inducible genes. Cell Rep. 26, 1174-1188 .
|
Chen, Y., Jiang, H., Wang, T., He, D., Tian, R., Cui, Z., Tian, X., Gao, Q., Ma, X., Yang, J., et al., 2020a. In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system. Antiviral Res. 178, 104794.
|
Chen, Y., Liu, J., Zhi, S., Zheng, Q., Ma, W., Huang, J., Liu, Y., Liu, D., Liang, P., Songyang, Z., 2020b. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Nat. Commun. 11, 3136.
|
Chen, Y., Zhang, L., Li, E., Zhang, G., Hou, Y., Yuan, W., Qu, W., Ding, L., 2020c. Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci. 253, 117685.
|
Chen, X., Shi, Y., Xue, P., Ma, X., Li, J., Zhang, J., 2020. Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res. Ther. 22, 256.
|
Chen, Y.X., Zhi, S.Y., Liu, W.L., Wen, J.K., Hu, S.H., Cao, T.Q., Sun, H.W., Li, Y., Huang, L., Liu, Y.Z., et al., 2020. Development of highly efficient dual-AAV split adenosine base editor for in vivo gene therapy. Small Methods 4.
|
Chen, L., Park, J.E., Paa, P., Rajakumar, P.D., Prekop, H.T., Chew, Y.T., Manivannan, S.N., Chew, W.L., 2021. Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nat. Commun. 12, 1384.
|
Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.-F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al., 2021. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635-5652.
|
Chen, Y., Hu, Y., Wang, X., Luo, S., Yang, N., Chen, Y., Li, Z., Zhou, Q., Li, W., 2022. Synergistic engineering of CRISPR-Cas nucleases enables robust mammalian genome editing. Innovation (Camb) 3, 100264.
|
Chen, L., Zhang, S., Xue, N., Hong, M., Zhang, X., Zhang, D., Yang, J., Bai, S., Huang, Y., Meng, H., et al., 2023a. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101-110.
|
Chen, L., Zhu, B., Ru, G., Meng, H., Yan, Y., Hong, M., Zhang, D., Luan, C., Zhang, S., Wu, H., et al., 2023b. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663-672.
|
Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., Rangarajan, S., Shivalila, C.S., Dadon, D.B., Jaenisch, R., 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163-1171.
|
Cheng, A.W., Jillette, N., Lee, P., Plaskon, D., Fujiwara, Y., Wang, W., Taghbalout, A., Wang, H., 2016. Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Res. 26, 254-257.
|
Cheng, F., Hu, H., Sun, K., Yan, F., Geng, Y., 2020. miR-455-3p enhances chondrocytes apoptosis and inflammation by targeting COL2A1 in the in vitro osteoarthritis model. Biosci. Biotechnol. Biochem. 84, 695-702.
|
Chevalier, X., Goupille, P., Beaulieu, A.D., Burch, F.X., Bensen, W.G., Conrozier, T., Loeuille, D., Kivitz, A.J., Silver, D., Appleton, B.E., 2009. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 61, 344-352.
|
Chew, W.L., Tabebordbar, M., Cheng, J.K.W., Mali, P., Wu, E.Y., Ng, A.H.M., Zhu, K.X., Wagers, A.J., Church, G.M., 2016. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868-874.
|
Cho, S.W., Kim, S., Kim, J.M., Kim, J.S., 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230-232.
|
Choi, J., Chen, W., Suiter, C.C., Lee, C., Chardon, F.M., Yang, W., Leith, A., Daza, R.M., Martin, B., Shendure, J., 2021. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218-226.
|
Choudhury, S.R., Cui, Y., Lubecka, K., Stefanska, B., Irudayaraj, J., 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545-46556.
|
Colognori, D., Trinidad, M., Doudna, J.A., 2023. Precise transcript targeting by CRISPR-Csm complexes. Nat. Biotechnol.
|
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
|
Cosenza, S., Ruiz, M., Toupet, K., Jorgensen, C., Noel, D., 2017. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 7, 16214.
|
Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, P., Blanc-Brude, O., Jorgensen, C., Noel, D., 2018. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8, 1399-1410.
|
Cox, D.B.T., Gootenberg, J.S., Abudayyeh, O.O., Franklin, B., Kellner, M.J., Joung, J., Zhang, F., 2017. RNA editing with CRISPR-Cas13. Science 358, 1019-1027.
|
Cucchiarini, M., Asen, A.K., Goebel, L., Venkatesan, J.K., Schmitt, G., Zurakowski, D., Menger, M.D., Laschke, M.W., Madry, H., 2018. Effects of TGF-beta overexpression via rAAV gene transfer on the early repair processes in an osteochondral defect model in minipigs. Am J. Sports Med. 46, 1987-1996.
|
Cullot, G., Boutin, J., Toutain, J., Prat, F., Pennamen, P., Rooryck, C., Teichmann, M., Rousseau, E., Lamrissi-Garcia, I., Guyonnet-Duperat, V., et al., 2019. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136.
|
Davatchi, F., Sadeghi Abdollahi, B., Mohyeddin, M., Nikbin, B., 2016. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int. J. Rheum. Dis. 19, 219-225.
|
Della Ragione, F., Vacca, M., Fioriniello, S., Pepe, G., D'Esposito, M., 2016. MECP2, a multi-talented modulator of chromatin architecture. Brief Funct. Genomics 15, 420-431.
|
Deng, L., Ren, R., Liu, Z., Song, M., Li, J., Wu, Z., Ren, X., Fu, L., Li, W., Zhang, W., et al., 2019. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat. Commun.10, 3329.
|
Dernedde, J., Rausch, A., Weinhart, M., Enders, S., Tauber, R., Licha, K., Schirner, M., Zugel, U., von Bonin, A., Haag, R., 2010. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc. Natl. Acad. Sci. U. S. A. 107, 19679-19684.
|
Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S., 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol.190, 1390-1400.
|
Doman, J.L., Raguram, A., Newby, G.A., Liu, D.R., 2020. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620-628.
|
East-Seletsky, A., O'Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H., Tjian, R., Doudna, J.A., 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273.
|
Egli, R.J., Southam, L., Wilkins, J.M., Lorenzen, I., Pombo-Suarez, M., Gonzalez, A., Carr, A., Chapman, K., Loughlin, J., 2009. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 60, 2055-2064.
|
Enache, O.M., Rendo, V., Abdusamad, M., Lam, D., Davison, D., Pal, S., Currimjee, N., Hess, J., Pantel, S., Nag, A., et al., 2020. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662-668.
|
Esposito, R., Polidori, T., Meise, D.F., Pulido-Quetglas, C., Chouvardas, P., Forster, S., Schaerer, P., Kobel, A., Schlatter, J., Kerkhof, E., et al., Ochsenbein, A.F., Riether, C., Johnson, R., 2022. Multi-hallmark long noncoding RNA maps reveal non-small cell lung cancer vulnerabilities. Cell Genom. 2, 100171.
|
Fang, P., Zhang, L.X., Hu, Y., Zhang, L., Zhou, L.W., 2019. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells. Eur. Rev. Med. Pharmacol. Sci. 23, 10459-10469.
|
Farhang, N., Brunger, J.M., Stover, J.D., Thakore, P.I., Lawrence, B., Guilak, F., Gersbach, C.A., Setton, L.A., Bowles, R.D., 2017. CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738-749.
|
Farzadfard, F., Perli, S.D., Lu, T.K., 2013. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604-613.
|
Fellows, C.R., Matta, C., Zakany, R., Khan, I.M., Mobasheri, A., 2016. Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Front. Genet. 7, 213.
|
Felson, D.T., 2009. Developments in the clinical understanding of osteoarthritis. Arthritis Res. Ther. 11, 203.
|
Felson, D.T., 2010. Arthroscopy as a treatment for knee osteoarthritis. Best Pract. Res. Clin. Rheumatol. 24, 47-50.
|
Felson, D.T., Nevitt, M.C., 2004. Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum. Dis. Clin. North Am. 30, 783-797.
|
Felson, D.T., Zhang, Y., 1998. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 41, 1343-1355.
|
Feng, Y., Liu, S., Mo, Q., Liu, P., Xiao, X., Ma, H., 2023. Enhancing prime editing efficiency and flexibility with tethered and split pegRNAs. Protein Cell 14, 304-308.
|
Fernandes, J., Tardif, G., Martel-Pelletier, J., Lascau-Coman, V., Dupuis, M., Moldovan, F., Sheppard, M., Krishnan, B.R., Pelletier, J.P., 1999. In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J. Pathol. 154, 1159-1169.
|
Ferreira da Silva, J., Oliveira, G., Arasa-Verge, E., Moretton, A., Timelthaler, G., Jiricny, J., Loizou, J., 2021. Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. bioRxiv, 2021.2009.2030.462548.
|
Fidanza, A., Lopez-Yrigoyen, M., Romano, N., Jones, R., Taylor, A.H., Forrester, L.M., 2017. An all-in-one UniSam vector system for efficient gene activation. Sci. Rep. 7, 6394.
|
Flannery, O., Smith, K., 2014. Osteolysis with secondary arthritis of the scaphotrapeziotrapezoid joint in Hajdu-Cheney syndrome: a case report. Hand Surg. 19, 117-118.
|
Fransen, M., McConnell, S., Hernandez-Molina, G., Reichenbach, S., 2014. Exercise for osteoarthritis of the hip. Cochrane Database Syst. Rev., CD007912.
|
Fransen, M., McConnell, S., Harmer, A.R., Van der Esch, M., Simic, M., Bennell, K.L., 2015. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br J. Sports Med. 49, 1554-1557.
|
Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., Sander, J.D., 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826.
|
Fu, L., Hu, Y., Song, M., Liu, Z., Zhang, W., Yu, F.X., Wu, J., Wang, S., Izpisua Belmonte, J.C., Chan, P., et al., 2019. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201.
|
Fukui, N., Purple, C.R., Sandell, L.J., 2001. Cell biology of osteoarthritis: the chondrocyte's response to injury. Curr. Rheumatol Rep. 3, 496-505.
|
Gao, X., Tsang, J.C., Gaba, F., Wu, D., Lu, L., Liu, P., 2014. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155.
|
Gao, Y., Xiong, X., Wong, S., Charles, E.J., Lim, W.A., Qi, L.S., 2016. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043-1049.
|
Gao, L., Cox, D.B.T., Yan, W.X., Manteiga, J.C., Schneider, M.W., Yamano, T., Nishimasu, H., Nureki, O., Crosetto, N., Zhang, F., 2017. Engineered Cpf1 variants with altered PAM specificities. Nature Biotechnol. 35, 789-792.
|
Gao, X., Tao, Y., Lamas, V., Huang, M., Yeh, W.H., Pan, B., Hu, Y.J., Hu, J.H., Thompson, D.B., Shu, Y., et al., 2018. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217-221.
|
Gao, P., Lyu, Q., Ghanam, A.R., Lazzarotto, C.R., Newby, G.A., Zhang, W., Choi, M., Slivano, O.J., Holden, K., Walker, J.A., et al., 2021. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. 22, 83.
|
Gao, Z., Ravendran, S., Mikkelsen, N.S., Haldrup, J., Cai, H., Ding, X., Paludan, S.R., Thomsen, M.K., Mikkelsen, J.G., Bak, R.O., 2022. A truncated reverse transcriptase enhances prime editing by split AAV vectors. Mol. Ther. 30, 2942-2951.
|
Garcia-Alvarez, F., Alegre-Aguaron, E., Desportes, P., Royo-Canas, M., Castiella, T., Larrad, L., Martinez-Lorenzo, M.J., 2011. Chondrogenic differentiation in femoral bone marrow-derived mesenchymal cells (MSC) from elderly patients suffering osteoarthritis or femoral fracture. Arch. Gerontol. Geriatr. 52, 239-242.
|
Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A∗T to G∗C in genomic DNA without DNA cleavage. Nature 551, 464-471.
|
Gaudelli, N.M., Lam, D.K., Rees, H.A., Sola-Esteves, N.M., Barrera, L.A., Born, D.A., Edwards, A., Gehrke, J.M., Lee, S.J., Liquori, A.J., et al., 2020. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892-900.
|
Gehrke, J.M., Cervantes, O., Clement, M.K., Wu, Y., Zeng, J., Bauer, D.E., Pinello, L., Joung, J.K., 2018. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat. Biotechnol. 36, 977-982.
|
Geiger, B.C., Wang, S., Padera, R.F., Jr., Grodzinsky, A.J., Hammond, P.T., 2018. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10, eaat8800.
|
Gelse, K., Jiang, Q.J., Aigner, T., Ritter, T., Wagner, K., Poschl, E., von der Mark, K., Schneider, H., 2001. Fibroblast-mediated delivery of growth factor complementary DNA into mouse joints induces chondrogenesis but avoids the disadvantages of direct viral gene transfer. Arthritis Rheum. 44, 1943-1953.
|
Gemberling, M.P., Siklenka, K., Rodriguez, E., Tonn-Eisinger, K.R., Barrera, A., Liu, F., Kantor, A., Li, L., Cigliola, V., Hazlett, M.F.,et al., 2021. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods 18, 965-974.
|
Gigout, A., Guehring, H., Froemel, D., Meurer, A., Ladel, C., Reker, D., Bay-Jensen, A.C., Karsdal, M.A., Lindemann, S., 2017. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthritis Cartilage 25, 1858-1867.
|
Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al., 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451.
|
Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al., 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647-661.
|
Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O'Connell, D., Walsh, K.R., Wood, K., et al., 2021. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493-502.
|
Goel, K., Ploski, J.E., 2022. RISC-Y business: limitations of short hairpin RNA-mediated gene silencing in the brain and a discussion of CRISPR/Cas-based alternatives. Front. Mol. Neurosci. 15, 914430.
|
Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., Verdine, V., Donghia, N., Daringer, N.M., Freije, C.A., et al., 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438-442.
|
Grotle, M., Hagen, K.B., Natvig, B., Dahl, F.A., Kvien, T.K., 2008a. Obesity and osteoarthritis in knee, hip and/or hand: an epidemiological study in the general population with 10 years follow-up. BMC Musculoskelet. Disord. 9, 132.
|
Grotle, M., Hagen, K.B., Natvig, B., Dahl, F.A., Kvien, T.K., 2008b. Prevalence and burden of osteoarthritis: results from a population survey in Norway. J. Rheumatol. 35, 677-684.
|
Grunewald, J., Zhou, R., Garcia, S.P., Iyer, S., Lareau, C.A., Aryee, M.J., Joung, J.K., 2019a. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433-437.
|
Grunewald, J., Zhou, R.H., Iyer, S., Lareau, C.A., Garcia, S.P., Aryee, M.J., Joung, J.K., 2019b. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041-1048.
|
Guilak, F., Pferdehirt, L., Ross, A.K., Choi, Y.R., Collins, K., Nims, R.J., Katz, D.B., Klimak, M., Tabbaa, S., Pham, C.T.N., 2019. Designer stem cells: genome engineering and the next generation of cell-based therapies. J. Orthop. Res. 37, 1287-1293.
|
Gupta, S., Hawker, G.A., Laporte, A., Croxford, R., Coyte, P.C., 2005. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology (Oxford) 44, 1531-1537.
|
Ha, C.W., Noh, M.J., Choi, K.B., Lee, K.H., 2012. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14, 247-256.
|
Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., Taipale, J., 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927-930.
|
Hajizadeh-Sikaroodi, S., Hosseini, A., Fallah, A., Estiri, H., Noormohammadi, Z., Salehi, M., Ghaderian, S.M., Akhavan Niaki, H., Soleimani, M., Kazemi, B., 2014. Lentiviral mediating genetic engineered mesenchymal stem cells for releasing IL-27 as a gene therapy approach for autoimmune diseases. Cell 16, 255-262.
|
Haldeman, J.M., Conway, A.E., Arlotto, M.E., Slentz, D.H., Muoio, D.M., Becker, T.C., Newgard, C.B., 2019. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res. 47, e23.
|
Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., Terns, R.M., Terns, M.P., 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945-956.
|
Hale, C.R., Majumdar, S., Elmore, J., Pfister, N., Compton, M., Olson, S., Resch, A.M., Glover, C.V.R., Graveley, B.R., Terns, R.M., et al., 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45, 292-302.
|
Hamerman, D., 1989. The biology of osteoarthritis. N. Engl. J. Med. 320, 1322-1330.
|
Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., Cofsky, J.C., Kyrpides, N.C., Banfield, J.F., Doudna, J.A., 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839-842.
|
Harris, E.C., Coggon, D., 2015. HIP osteoarthritis and work. Best Pract. Res. Clin. Rheumatol. 29, 462-482.
|
He, B., Jiang, D., 2020. HOTAIR-induced apoptosis is mediated by sponging miR-130a-3p to repress chondrocyte autophagy in knee osteoarthritis. Cell Biol. Int. 44, 524-535.
|
He, L., He, T., Xing, J., Zhou, Q., Fan, L., Liu, C., Chen, Y., Wu, D., Tian, Z., Liu, B., et al., 2020. Bone marrow mesenchymal stem cell-derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res. Ther. 11, 276.
|
Hilton, I.B., D'Ippolito, A.M., Vockley, C.M., Thakore, P.I., Crawford, G.E., Reddy, T.E., Gersbach, C.A., 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510-517.
|
Hirano, S., Nishimasu, H., Ishitani, R., Nureki, O., 2016. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol. Cell 61, 886-894.
|
Holmes, M.W., Bayliss, M.T., Muir, H., 1988. Hyaluronic acid in human articular cartilage. Age-related changes in content and size. Biochem. J. 250, 435-441.
|
Holmgaard, A., Askou, A.L., Benckendorff, J.N.E., Thomsen, E.A., Cai, Y., Bek, T., Mikkelsen, J.G., Corydon, T.J., 2017. In vivo knockout of the Vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol. Ther. Nucleic Acids 9, 89-99.
|
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al., 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832.
|
Hu, J.H., Miller, S.M., Geurts, M.H., Tang, W., Chen, L., Sun, N., Zeina, C.M., Gao, X., Rees, H.A., Lin, Z., et al., 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63.
|
Hu, S., Du, J., Chen, N., Jia, R., Zhang, J., Liu, X., Yang, L., 2020. In vivo CRISPR/Cas9-Mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-linked retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 61, 31.
|
Huang, Y., Askew, E.B., Knudson, C.B., Knudson, W., 2016. CRISPR/Cas9 knockout of HAS2 in rat chondrosarcoma chondrocytes demonstrates the requirement of hyaluronan for aggrecan retention. Matrix Biol. 56, 74-94.
|
Huang, Y.H., Su, J., Lei, Y., Brunetti, L., Gundry, M.C., Zhang, X., Jeong, M., Li, W., Goodell, M.A., 2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol. 18, 176.
|
Huang, T.P., Zhao, K.T., Miller, S.M., Gaudelli, N.M., Oakes, B.L., Fellmann, C., Savage, D.F., Liu, D.R., 2019. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626-631.
|
Huang, C.J., Adler, B.A., Doudna, J.A., 2022. A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Mol. Cell 82, 2148-2160.
|
Hunter, D.J., Bierma-Zeinstra, S., 2019. Osteoarthritis. Lancet 393, 1745-1759.
|
Hunter, D.J., McDougall, J.J., Keefe, F.J., 2009. The symptoms of osteoarthritis and the genesis of pain. Med. Clin. North Am. 93, 83-100.
|
Hunter, D.J., Schofield, D., Callander, E., 2014. The individual and socioeconomic impact of osteoarthritis. Nat. Rev. Rheumatol. 10, 437-441.
|
Huynh, N.P., Gloss, C.C., Lorentz, J., Tang, R., Brunger, J.M., McAlinden, A., Zhang, B., Guilak, F., 2020. Long non-coding RNA GRASLND enhances chondrogenesis via suppression of the interferon type II signaling pathway. eLife 9.
|
Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al., 2018. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939-946.
|
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., Nakata, A., 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.
|
Iwamoto, M., Ohta, Y., Larmour, C., Enomoto-Iwamoto, M., 2013. Toward regeneration of articular cartilage. Birth Defects Res. C Embryo Today 99, 192-202.
|
Jang, H., Shin, J.H., Jo, D.H., Seo, J.H., Yu, G., Gopalappa, R., Cho, S.-R., Kim, J.H., Kim, H.H., 2021. Prime editing enables precise genome editing in mouse liver and retina. bioRxiv, 2021.2001.2008.425835.
|
Jansen, R., Embden, J.D., Gaastra, W., Schouls, L.M., 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565-1575.
|
Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K., 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050-1074.
|
Jeon, O.H., Kim, C., Laberge, R.M., Demaria, M., Rathod, S., Vasserot, A.P., Chung, J.W., Kim, D.H., Poon, Y., David, N., et al., 2017. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775-781.
|
Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., Cheng, X., 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248-251.
|
Jiang, C., Mei, M., Li, B., Zhu, X., Zu, W., Tian, Y., Wang, Q., Guo, Y., Dong, Y., Tan, X., 2017. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440-443.
|
Jiang, T., Zhang, X.-O., Weng, Z., Xue, W., 2021. Deletion and replacement of long genomic sequences using prime editing. Nat. Biotechnol. 40, 227-234.
|
Jin, S., Zong, Y., Gao, Q., Zhu, Z., Wang, Y., Qin, P., Liang, C., Wang, D., Qiu, J.L., Zhang, F., et al., 2019. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292-295.
|
Jin, S., Fei, H., Zhu, Z., Luo, Y., Liu, J., Gao, S., Zhang, F., Chen, Y.H., Wang, Y., Gao, C., 2020. Rationally designed APOBEC3B cytosine base editors with improved specificity. Mol. Cell 79, 728-740.
|
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
|
Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., Doudna, J., 2013. RNA-programmed genome editing in human cells. eLife 2, e00471.
|
Johnson, K., Terkeltaub, R., 2004. Upregulated ank expression in osteoarthritis can promote both chondrocyte MMP-13 expression and calcification via chondrocyte extracellular PPi excess. Osteoarthritis Cartilage 12, 321-335.
|
Josipovic, G., Tadic, V., Klasic, M., Zanki, V., Beceheli, I., Chung, F., Ghantous, A., Keser, T., Madunic, J., Boskovic, M., et al., 2019a. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res. 47, 9637-9657.
|
Josipovic, G., Zoldos, V., Vojta, A., 2019b. Active fusions of Cas9 orthologs. J. Biotechnol. 301, 18-23.
|
Kannan, S., Altae-Tran, H., Jin, X., Madigan, V.J., Oshiro, R., Makarova, K.S., Koonin, E.V., Zhang, F., 2022. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194-197.
|
Kantor, A., McClements, M.E., MacLaren, R.E., 2020. CRISPR-Cas9 DNA base-editing and prime-editing.Int. J. Mol. Sci. 21, 6240.
|
Karlsen, A.T., Pernas, F.P., Staerk, J., Caglayan, S., Brinchmann, E.J., 2016. Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing. Osteoarthritis Cartilage 24(Suppl. 1), S325.
|
Karvelis, T., Gasiunas, G., Siksnys, V., 2013. Programmable DNA cleavage in vitro by Cas9. Biochem. Soc. Trans. 41, 1401-1406.
|
Kaul, G., Cucchiarini, M., Arntzen, D., Zurakowski, D., Menger, M.D., Kohn, D., Trippel, S.B., Madry, H., 2006. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J. Gene Med. 8, 100-111.
|
Kay, J.D., Gouze, E., Oligino, T.J., Gouze, J.N., Watson, R.S., Levings, P.P., Bush, M.L., Dacanay, A., Nickerson, D.M., Robbins, P.D., et al., 2009. Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus. J. Gene Med.11, 605-614.
|
Kearns, N.A., Pham, H., Tabak, B., Genga, R.M., Silverstein, N.J., Garber, M., Maehr, R., 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401-403.
|
Kellner, M.J., Koob, J.G., Gootenberg, J.S., Abudayyeh, O.O., Zhang, F., 2019. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986-3012.
|
Kemaladewi, D.U., Bassi, P.S., Erwood, S., Al-Basha, D., Gawlik, K.I., Lindsay, K., Hyatt, E., Kember, R., Place, K.M., Marks, R.M., et al., 2019. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125-130.
|
Khodavirdipour, A., Piri, M., Jabbari, S., Khalaj-Kondori, M., 2021. Potential of CRISPR/Cas13 system in treatment and diagnosis of COVID-19. Glob Med. Genet. 8, 7-10.
|
Kim, J.H., Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y., Do, H.J., Lim, H.Y., Kim, J.M., Park, K.H., 2011. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32, 268-278.
|
Kim, J.M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J.C., Ulmer, T.S., An, W., 2015. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res. 43, 8868-8883.
|
Kim, S., Bae, T., Hwang, J., Kim, J.S., 2017. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides. Genome Biol. 18.
|
Kim, Y.B., Komor, A.C., Levy, J.M., Packer, M.S., Zhao, K.T., Liu, D.R., 2017. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376.
|
Kim, E., Koo, T., Park, S.W., Kim, D., Kim, K., Cho, H.Y., Song, D.W., Lee, K.J., Jung, M.H., Kim, S., et al., 2017. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8, 14500.
|
Kim, J.H., Kim, H.J., Lee, D.H., 2017. Survival of opening versus closing wedge high tibial osteotomy: a meta-analysis. Sci. Rep. 7, 7296.
|
Kim, D., Kim, D.E., Lee, G., Cho, S.I., Kim, J.S., 2019. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat. Biotechnol. 37, 430-435.
|
Kim, D.Y., Lee, J.M., Moon, S.B., Chin, H.J., Park, S., Lim, Y., Kim, D., Koo, T., Ko, J.H., Kim, Y.S., 2021. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol., 40, 94-102.
|
Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., Kim, H.H., 2021. Predicting the efficiency of prime editing guide RNAs in human cells. Nat. Biotechnol. 39, 198-206.
|
Kim, D., Chung, Y.H., Lee, Y.J., Jeong, D., Park, K.H., Chin, H.J., Lee, J.M., Park, S., Ko, S.M., Ko, J.H., et al., 2023. Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nat. Chem. Biol. 19. 389.
|
Klein, J.C., Keith, A., Rice, S.J., Shepherd, C., Agarwal, V., Loughlin, J., Shendure, J., 2019. Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nat. Commun. 10, 2434.
|
Kleinjan, D.A., Wardrope, C., Sou, S.N., Rosser, S.J., 2017. Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat. Commun. 8.
|
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P., Li, Z., Peterson, R.T., Yeh, J.R., et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485.
|
Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Joung, J.K., 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495.
|
Kleinstiver, B.P., Sousa, A.A., Walton, R.T., Tak, Y.E., Hsu, J.Y., Clement, K., Welch, M.M., Horng, J.E., Malagon-Lopez, J., Scarfo, I., et al., 2019. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276-282.
|
Knott, G.J., East-Seletsky, A., Cofsky, J.C., Holton, J.M., Charles, E., O'Connell, M.R., Doudna, J.A., 2017. Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat. Struct. Mol. Biol. 24, 825-833.
|
Ko, J.Y., Lee, J., Ryu, Y.H., Im, G.I., 2019. SOX-6, 9-transfected adipose stem cells to treat surgically-induced osteoarthritis in goats. Tissue Eng. Part A 25, 990-1000.
|
Koblan, L.W., Doman, J.L., Wilson, C., Levy, J.M., Tay, T., Newby, G.A., Maianti, J.P., Raguram, A., Liu, D.R., 2018. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843-846.
|
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
|
Konermann, S., Brigham, M.D., Trevino, A.E., Joung, J., Abudayyeh, O.O., Barcena, C., Hsu, P.D., Habib, N., Gootenberg, J.S., Nishimasu, H., et al., 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588.
|
Konermann, S., Lotfy, P., Brideau, N.J., Oki, J., Shokhirev, M.N., Hsu, P.D., 2018. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665-676.
|
Kong, X., Zhang, H., Li, G., Wang, Z., Kong, X., Wang, L., Xue, M., Zhang, W., Wang, Y., Lin, J., et al., 2023. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14, 2046.
|
Kosicki, M., Tomberg, K., Bradley, A., 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765-771.
|
Kreitz, J., Friedrich, M.J., Guru, A., Lash, B., Saito, M., Macrae, R.K., Zhang, F., 2023. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357-364.
|
Kumar, N., Stanford, W., de Solis, C., Aradhana, Abraham, N.D., Dao, T.J., Thaseen, S., Sairavi, A., Gonzalez, C.U., Ploski, J.E., 2018. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front. Mol. Neurosci. 11, 413.
|
Kuscu, C., Mammadov, R., Czikora, A., Unlu, H., Tufan, T., Fischer, N.L., Arslan, S., Bekiranov, S., Kanemaki, M., Adli, M., 2019. Temporal and spatial epigenome editing allows precise gene Regulation in mammalian cells. J. Mol. Biol. 431, 111-121.
|
Kushawah, G., Hernandez-Huertas, L., Abugattas-Nunez Del Prado, J., Martinez-Morales, J.R., DeVore, M.L., Hassan, H., Moreno-Sanchez, I., Tomas-Gallardo, L., Diaz-Moscoso, A., Monges, D.E., et al., 2020. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev. Cell 54, 805-817.
|
Kweon, J., Hwang, H.Y., Ryu, H., Jang, A.H., Kim, D., Kim, Y., 2023. Targeted genomic translocations and inversions generated using a paired prime editing strategy. Mol. Ther. 31, 249-259.
|
Kwon, D.Y., Zhao, Y.T., Lamonica, J.M., Zhou, Z., 2017. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 8,15315.
|
Lambert, L.J., Challa, A.K., Niu, A., Zhou, L., Tucholski, J., Johnson, M.S., Nagy, T.R., Eberhardt, A.W., Estep, P.N., Kesterson, R.A., et al., 2016. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology. Dis. Model Mech. 9, 1169-1179.
|
Lamo-Espinosa, J.M., Mora, G., Blanco, J.F., Granero-Molto, F., Nunez-Cordoba, J.M., Sanchez-Echenique, C., Bondia, J.M., Aquerreta, J.D., Andreu, E.J., Ornilla, E., et al., 2016. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J. Transl. Med. 16, 213.
|
Lane, N.E., Oehlert, J.W., Bloch, D.A., Fries, J.F., 1998. The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9 year longitudinal study. J. Rheumatol. 25, 334-341.
|
Laroui, H., Grossin, L., Leonard, M., Stoltz, J.F., Gillet, P., Netter, P., Dellacherie, E., 2007. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 8, 3879-3885.
|
Latella, M.C., Di Salvo, M.T., Cocchiarella, F., Benati, D., Grisendi, G., Comitato, A., Marigo, V., Recchia, A., 2016. In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol. Ther. Nucleic Acids 5, e389.
|
Lee, A.S., Ellman, M.B., Yan, D., Kroin, J.S., Cole, B.J., van Wijnen, A.J., Im, H.J., 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527, 440-447.
|
Lee, S., Ding, N., Sun, Y., Yuan, T., Li, J., Yuan, Q., Liu, L., Yang, J., Wang, Q., Kolomeisky, A.B., et al., 2020. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Sci. Adv. 6, eaba1773.
|
Lefebvre, V., Dvir-Ginzberg, M., 2017. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect. Tissue Res. 58, 2-14.
|
Lei, Y., Zhang, X.T., Su, J.Z., Jeong, M., Gundry, M.C., Huang, Y.H., Zhou, Y.B., Li, W., Goodell, M.A., 2017. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat. Commun. 8, 16026.
|
Leibowitz, M.L., Papathanasiou, S., Doerfler, P.A., Blaine, L.J., Sun, L., Yao, Y., Zhang, C.Z., Weiss, M.J., Pellman, D., 2021. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat. Genet. 53, 895-905.
|
Levy, J.M., Yeh, W.H., Pendse, N., Davis, J.R., Hennessey, E., Butcher, R., Koblan, L.W., Comander, J., Liu, Q., Liu, D.R., 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97-110.
|
Li, X., Ellman, M.B., Kroin, J.S., Chen, D., Yan, D., Mikecz, K., Ranjan, K.C., Xiao, G., Stein, G.S., Kim, S.G., et al., 2012. Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J. Cell Biochem. 113, 2532-2542.
|
Li, Y., Wang, Y., Chubinskaya, S., Schoeberl, B., Florine, E., Kopesky, P., Grodzinsky, A.J., 2015. Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis. Osteoarthritis Cartilage 23, 266-274.
|
Li, Z., Yuan, B., Pei, Z., Zhang, K., Ding, Z., Zhu, S., Wang, Y., Guan, Z., Cao, Y., 2019. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J Cell Mol. Med. 23, 6554-6564.
|
Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., Wu, X., 2020. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biol. 18, e3000749.
|
Li, J., Mahata, B., Escobar, M., Goell, J., Wang, K., Khemka, P., Hilton, I.B., 2021a. Programmable human histone phosphorylation and gene activation using a CRISPR/Cas9-based chromatin kinase. Nat. Commun. 12, 896.
|
Li, J., Xu, R., Qin, R., Liu, X., Kong, F., Wei, P., 2021b. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants. Mol. Plant 14, 352-360.
|
Li, C., Cao, Y., Zhang, L., Li, J., Wang, J., Zhou, Y., Wei, H., Guo, M., Liu, L., Liu, C., et al., 2021. CRISPR-CasRx targeting LncRNA LINC00341 inhibits tumor cell growth in vitro and in vivo. Front. Mol. Biosci. 8, 638995.
|
Li, G., Wang, Y., Li, X., Wang, Y., Huang, X., Gao, J., Hu, X., 2021. Developing PspCas13b-based enhanced RESCUE system, eRESCUE, with efficient RNA base editing. Cell Commun. Signal. 19, 84.
|
Li, Y., Chen, J., Tsai, S.Q., Cheng, Y., 2021. Easy-Prime: a machine learning-based prime editor design tool. Genome Biol. 22, 235.
|
Li, X., Wang, X., Sun, W., Huang, S., Zhong, M., Yao, Y., Ji, Q., Huang, X., 2022a. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell Biol. 14, mjac022.
|
Li, X., Xie, C., Xiao, F., Su, H., Li, Z., Weng, J., Huang, Y., He, P., 2022b. Circular RNA circ_0000423 regulates cartilage ECM synthesis via circ_0000423/miRNA-27b-3p/MMP-13 axis in osteoarthritis. Aging 14, 3400-3415.
|
Li, X., Zhou, L., Gao, B.Q., Li, G., Wang, X., Wang, Y., Wei, J., Han, W., Wang, Z., Li, J., et al., 2022c. Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nat. Commun. 13, 1669.
|
Li, J., Shen, Z., Liu, Y., Yan, Z., Liu, Y., Lin, X., Tang, J., Lv, R., Geng, G., Xiong, Z.Q., et al., 2023. A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Mol. Ther. 31, 2286-2295.
|
Liang, B., Mamidi, M.K., Samsa, W.E., Chen, Y., Lee, B., Zheng, Q., Zhou, G., 2020. Targeted and sustained Sox9 expression in mouse hypertrophic chondrocytes causes severe and spontaneous osteoarthritis by perturbing cartilage homeostasis. Am J. Transl. Res. 12, 1056-1069.
|
Liao, H.K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M.Z., Sui, Y., Yamauchi, T., Sakurai, M., O'Keefe, D.D., Nunez-Delicado, E., et al., 2017. In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171, 1495-1507.
|
Liddle, A.D., Pegg, E.C., Pandit, H., 2013. Knee replacement for osteoarthritis. Maturitas 75, 131-136.
|
Lim, C.K.W., Gapinske, M., Brooks, A.K., Woods, W.S., Powell, J.E., Zeballos, C.M., Winter, J., Perez-Pinera, P., Gaj, T., 2020. Treatment of a mouse model of ALS by in vivo base editing. Mol. Ther. 28, 1177-1189.
|
Lin, L., Liu, Y., Xu, F., Huang, J., Daugaard, T.F., Petersen, T.S., Hansen, B., Ye, L., Zhou, Q., Fang, F., et al., 2018. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7, 1-19.
|
Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
|
Lin, Q.P., Jin, S., Zong, Y., Yu, H., Zhu, Z.X., Liu, G.W., Kou, L.Q., Wang, Y.P., Qiu, J.L., Li, J.Y., et al., 2021. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923-927.
|
Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J., Dadon, D., Young, R.A., Jaenisch, R., 2016. Editing DNA methylation in the mammalian genome. Cell 167, 233-247.
|
Liu, L., Li, X., Wang, J., Wang, M., Chen, P., Yin, M., Li, J., Sheng, G., Wang, Y., 2017. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134.
|
Liu, X.S., Wu, H., Krzisch, M., Wu, X., Graef, J., Muffat, J., Hnisz, D., Li, C.H., Yuan, B., Xu, C., et al., 2018. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172, 979-992.
|
Liu, Y., Lin, L., Zou, R., Wen, C., Wang, Z., Lin, F., 2018a. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 17, 2411-2422.
|
Liu, Y., Zou, R., Wang, Z., Wen, C., Zhang, F., Lin, F., 2018b. Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem. J. 475, 3629-3638.
|
Liu, J.J., Orlova, N., Oakes, B.L., Ma, E., Spinner, H.B., Baney, K.L.M., Chuck, J., Tan, D., Knott, G.J., Harrington, L.B., et al., 2019. Author correction: CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 568, E8-E10.
|
Liu, J., Chen, Y., Nong, B., Luo, X., Cui, K., Tan, W., Yang, Y., Ma, W., Liang, P., Songyang, Z., 2023. CRISPR-assisted transcription activation by phase separation proteins. Protein Cell, doi: 10.1093/procel/pwad013.
|
Liu, Y., Li, X., He, S., Huang, S., Li, C., Chen, Y., Liu, Z., Huang, X., Wang, X., 2020. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27.
|
Liu, P., Liang, S.Q., Zheng, C., Mintzer, E., Zhao, Y.G., Ponnienselvan, K., Mir, A., Sontheimer, E.J., Gao, G., Flotte, T.R., et al., 2021. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121.
|
Liu, Y., Yang, G., Huang, S.H., Li, X.Y., Wang, X., Li, G.L., Chi, T., Chen, Y.L., Huang, X.X., Wang, X.L., 2021. Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Res. 31, 1134-1136.
|
Loughlin, J., 2005. The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev. Mol. Med. 7, 1-12.
|
Lu, H., Lv, L., Dai, Y., Wu, G., Zhao, H., Zhang, F., 2013. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS One 8, e69950.
|
Lu, C.H., Yeh, T.S., Yeh, C.L., Fang, Y.H., Sung, L.Y., Lin, S.Y., Yen, T.C., Chang, Y.H., Hu, Y.C., 2014. Regenerating cartilages by engineered ASCs: prolonged TGF-beta3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol. Ther. 22, 186-195.
|
Lu, H., Dai, Y., Lv, L., Zhao, H., 2014. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 9, e84703.
|
Lu, J., Zhao, C., Zhao, Y., Zhang, J., Zhang, Y., Chen, L., Han, Q., Ying, Y., Peng, S., Ai, R., et al., 2018. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res. 46, e25.
|
Luo, W., Morrison, H., de Groh, M., Waters, C., DesMeules, M., Jones-McLean, E., Ugnat, A.M., Desjardins, S., Lim, M., Mao, Y., 2007. The burden of adult obesity in Canada. Chronic Dis. Can. 27, 135-144.
|
Ma, D.C., Peng, S.G., Xie, Z., 2016. Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat. Commun. 7, 13056.
|
Ma, D., Peng, S., Huang, W., Cai, Z., Xie, Z., 2018. Rational design of mini-Cas9 for transcriptional activation. ACS Synth. Biol. 7, 978-985.
|
Ma, S., Liao, K., Li, M., Wang, X., Lv, J., Zhang, X., Huang, H., Li, L., Huang, T., Guo, X.,et al., 2023. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res. 51, 5271-5284.
|
Madry, H., Kaul, G., Cucchiarini, M., Stein, U., Zurakowski, D., Remberger, K., Menger, M.D., Kohn, D., Trippel, S.B., 2005. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12, 1171-1179.
|
Mahas, A., Wang, Q., Marsic, T., Mahfouz, M.M., 2021. A novel miniature CRISPR-Cas13 system for SARS-CoV-2 diagnostics. ACS Synth. Biol, ACS Synth. Biol. 2541-2551.
|
Makarova, K.S., Wolf, Y.I., Iranzo, J., Shmakov, S.A., Alkhnbashi, O.S., Brouns, S.J.J., Charpentier, E., Cheng, D., Haft, D.H., Horvath, P., et al., 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67-83.
|
Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., Church, G.M., 2013a. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838.
|
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., 2013b. RNA-guided human genome engineering via Cas9. Science 339, 823-826.
|
Mao, G., Zhang, Z., Hu, S., Zhang, Z., Chang, Z., Huang, Z., Liao, W., Kang, Y., 2018. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther. 9, 247.
|
Martinez-Redondo, P., Guillen-Guillen, I., Davidsohn, N., Wang, C., Prieto, J., Kurita, M., Hatanaka, F., Zhong, C., Hernandez-Benitez, R., Hishida, T., et al., 2020. alphaKLOTHO and sTGFbetaR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein Cell 11, 219-226.
|
Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., Hardin, A., Eckalbar, W.L., Vaisse, C., Ahituv, N., 2019. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363,.eaau0629.
|
McAlindon, T., Felson, D.T., 1997. Nutrition: risk factors for osteoarthritis. Ann. Rheum. Dis. 56, 397-400.
|
McAuley, G.E., Yiu, G., Chang, P.C., Newby, G.A., Campo-Fernandez, B., Fitz-Gibbon, S.T., Wu, X., Kang, S.L., Garibay, A., Butler, J., et al., 2023. Human T cell generation is restored in CD3delta severe combined immunodeficiency through adenine base editing. Cell 186, 1398-1416.
|
McDonald, J.I., Celik, H., Rois, L.E., Fishberger, G., Fowler, T., Rees, R., Kramer, A., Martens, A., Edwards, J.R., Challen, G.A., 2016. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open 5, 866-874.
|
McKinley, K.L., Cheeseman, I.M., 2017. Large-scale analysis of CRISPR/Cas9 cell-cycle knockouts reveals the diversity of p53-dependent responses to cell-cycle defects. Dev. Cell 40, 405-420.
|
Mendenhall, E.M., Williamson, K.E., Reyon, D., Zou, J.Y., Ram, O., Joung, J.K., Bernstein, B.E., 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133-1136.
|
Mesallati, T., Buckley, C.T., Kelly, D.J., 2014. A comparison of self-assembly and hydrogel encapsulation as a means to engineer functional cartilaginous grafts using culture expanded chondrocytes. Tissue Eng. Part C Methods 20, 52-63.
|
Mi, Z., Ghivizzani, S.C., Lechman, E.R., Jaffurs, D., Glorioso, J.C., Evans, C.H., Robbins, P.D., 2000. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum. 43, 2563-2570.
|
Mi, Z., Ghivizzani, S.C., Lechman, E., Glorioso, J.C., Evans, C.H., Robbins, P.D., 2003. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res. Ther. 5, R132-R139.
|
Miller, S.M., Wang, T., Randolph, P.B., Arbab, M., Shen, M.W., Huang, T.P., Matuszek, Z., Newby, G.A., Rees, H.A., Liu, D.R., 2020. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471-481.
|
Mistry, H., Connock, M., Pink, J., Shyangdan, D., Clar, C., Royle, P., Court, R., Biant, L.C., Metcalfe, A., Waugh, N., 2017. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol. Assess. 21, 1-294.
|
Miyamoto, Y., Mabuchi, A., Shi, D., Kubo, T., Takatori, Y., Saito, S., Fujioka, M., Sudo, A., Uchida, A., Yamamoto, S., et al., 2007. A functional polymorphism in the 5' UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat. Genet.39, 529-533.
|
Mobasheri, A., 2020. Future cell and gene therapy for osteoarthritis (OA): potential for using mammalian protein production platforms, irradiated and transfected protein packaging cell lines for over-production of therapeutic proteins and growth factors. Adv. Exp. Med. Biol.1247, 17-31.
|
Mochizuki, Y., Chiba, T., Kataoka, K., Yamashita, S., Sato, T., Kato, T., Takahashi, K., Miyamoto, T., Kitazawa, M., Hatta, T., et al., 2018. Combinatorial CRISPR/Cas9 approach to elucidate a far-upstream enhancer complex for tissue-specific Sox9 expression. Dev. Cell 46, 794-806.
|
Mojica, F.J., Diez-Villasenor, C., Soria, E., Juez, G., 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244-246.
|
Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Soria, E., 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174-182.
|
Molnar, V., Matisic, V., Kodvanj, I., Bjelica, R., Jelec, Z., Hudetz, D., Rod, E., Cukelj, F., Vrdoljak, T., Vidovic, D., et al., 2021. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int. J. Mol. Sci. 22, 9208.
|
Moreno, A.M., Fu, X., Zhu, J., Katrekar, D., Shih, Y.V., Marlett, J., Cabotaje, J., Tat, J., Naughton, J., Lisowski, L., et al., 2018. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol. Ther. 26, 1818-1827.
|
Morita, S., Noguchi, H., Horii, T., Nakabayashi, K., Kimura, M., Okamura, K., Sakai, A., Nakashitna, H., Hata, K., Nakashima, K., et al., 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34, 1060-1065.
|
Morita, S., Horii, T., Kimura, M., Hatada, I., 2020. Synergistic upregulation of target genes by TET1 and VP64 in the dCas9-SunTag platform. Int. J. Mol. Sci.21, 1574.
|
Morscheid, Y.P., Venkatesan, J.K., Schmitt, G., Orth, P., Zurakowski, D., Speicher-Mentges, S., Menger, M.D., Laschke, M.W., Cucchiarini, M., Madry, H., 2021. rAAV-mediated human FGF-2 gene therapy enhances osteochondral repair in a clinically relevant large animal model over time in vivo. Am. J. Sports Med. 49, 958-969.
|
Myhrvold, C., Freije, C.A., Gootenberg, J.S., Abudayyeh, O.O., Metsky, H.C., Durbin, A.F., Kellner, M.J., Tan, A.L., Paul, L.M., Parham, L.A., et al., 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science 360, 444-448.
|
Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al., 2021. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402-410.
|
Neugebauer, M.E., Hsu, A., Arbab, M., Krasnow, N.A., McElroy, A.N., Pandey, S., Doman, J.L., Huang, T.P., Raguram, A., Banskota, S., et al., 2023. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673-685.
|
Ng, C.K., Handley, C.J., Preston, B.N., Robinson, H.C., 1992. The extracellular processing and catabolism of hyaluronan in cultured adult articular cartilage explants. Arch. Biochem. Biophys. 298, 70-79.
|
Nguyen, H., Wilson, H., Jayakumar, S., Kulkarni, V., Kulkarni, S., 2021. Efficient inhibition of HIV using CRISPR/Cas13d nuclease system. Viruses 13, 1850.
|
Nishida, Y., D'Souza, A.L., Thonar, E.J., Knudson, W., 2000. Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheum. 43, 1315-1326.
|
Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh, O.O., Gootenberg, J.S., Mori, H., et al., 2018. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262.
|
Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et al., 2014. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836-843.
|
Nunez, J.K., Chen, J., Pommier, G.C., Cogan, J.Z., Replogle, J.M., Adriaens, C., Ramadoss, G.N., Shi, Q., Hung, K.L., Samelson, A.J., et al., 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503-2519.
|
O'Geen, H., Ren, C., Nicolet, C.M., Perez, A.A., Halmai, J., Le, V.M., Mackay, J.P., Farnham, P.J., Segal, D.J., 2017. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res. 45, 9901-9916.
|
O'Geen, H., Bates, S.L., Carter, S.S., Nisson, K.A., Halmai, J., Fink, K.D., Rhie, S.K., Farnham, P.J., Segal, D.J., 2019. Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12, 26.
|
Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H., Nakatani, Y., 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959.
|
Oka, M., Rodic, N., Graddy, J., Chang, L.J., Terada, N., 2006. CpG sites preferentially methylated by Dnmt3a in vivo. J. Biol. Chem. 281, 9901-9908.
|
Orth, P., Kaul, G., Cucchiarini, M., Zurakowski, D., Menger, M.D., Kohn, D., Madry, H., 2011. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg. Sports Traumatol. Arthrosc. 19, 2119-2130.
|
Ozcan, A., Krajeski, R., Ioannidi, E., Lee, B., Gardner, A., Makarova, K.S., Koonin, E.V., Abudayyeh, O.O., Gootenberg, J.S., 2021. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature 597, 720-725.
|
Panoutsopoulou, K., Southam, L., Elliott, K.S., Wrayner, N., Zhai, G., Beazley, C., Thorleifsson, G., Arden, N.K., Carr, A., Chapman, K., et al., 2011. Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study. Ann. Rheum. Dis. 70, 864-867.
|
Park, S.J., Jeong, T.Y., Shin, S.K., Yoon, D.E., Lim, S.Y., Kim, S.P., Choi, J., Lee, H., Hong, J.I., Ahn, J., et al., 2021. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170.
|
Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C.A., Li, Z., Cress, B.F., Knott, G.J., Jacobsen, S.E., Banfield, J.F., Doudna, J.A., 2020. CRISPR-CasPhi from huge phages is a hypercompact genome editor. Science 369, 333-337.
|
Pelletier, J.P., Caron, J.P., Evans, C., Robbins, P.D., Georgescu, H.I., Jovanovic, D., Fernandes, J.C., Martel-Pelletier, J., 1997. In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum. 40, 1012-1019.
|
Pereira, D., Ramos, E., Branco, J., 2015. Osteoarthritis. Acta. Med. Port. 28, 99-106.
|
Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al., 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973-976.
|
Pflueger, C., Tan, D., Swain, T., Nguyen, T., Pflueger, J., Nefzger, C., Polo, J.M., Ford, E., Lister, R., 2018. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res. 28, 1193-1206.
|
Pickar-Oliver, A., Black, J.B., Lewis, M.M., Mutchnick, K.J., Klann, T.S., Gilcrest, K.A., Sitton, M.J., Nelson, C.E., Barrera, A., Bartelt, L.C., et al., 2019. Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells. Nat. Biotechnol. 37, 1493-1501.
|
Polstein, L.R., Gersbach, C.A., 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198-200.
|
Poole, A.R., 1999. An introduction to the pathophysiology of osteoarthritis. Front. Biosci. 4, D662-D670.
|
Pourcel, C., Salvignol, G., Vergnaud, G., 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663.
|
Prieto-Alhambra, D., Judge, A., Javaid, M.K., Cooper, C., Diez-Perez, A., Arden, N.K., 2014. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 73, 1659-1664.
|
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183.
|
Qian, J., Guan, X., Xie, B., Xu, C., Niu, J., Tang, X., Li, C.H., Colecraft, H.M., Jaenisch, R., Liu, X.S., 2023. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci. Transl. Med. 15, eadd4666.
|
Qin, H., Wang, C., He, Y., Lu, A., Li, T., Zhang, B., Shen, J., 2023a. Silencing miR-146a-5p protects against injury-induced osteoarthritis in mice. Biomolecules 13, 123.
|
Qin, H., Zhang, W., Zhang, S., Feng, Y., Xu, W., Qi, J., Zhang, Q., Xu, C., Liu, S., Zhang, J., et al., 2023b. Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. J. Exp. Med. 220, e20220776.
|
Quenneville, S., Turelli, P., Bojkowska, K., Raclot, C., Offner, S., Kapopoulou, A., Trono, D., 2012. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2, 766-773.
|
Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al., 2013a. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389.
|
Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., Zhang, F., 2013b. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.
|
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., et al., 2015a. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
|
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X.B., Makarova, K.S., et al., 2015b. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, U186-U198.
|
Rees, H.A., Komor, A.C., Yeh, W.H., Caetano-Lopes, J., Warman, M., Edge, A.S.B., Liu, D.R., 2017. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790.
|
Rees, H.A., Wilson, C., Doman, J.L., Liu, D.R., 2019. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717.
|
Ren, X., Hu, B., Song, M., Ding, Z., Dang, Y., Liu, Z., Zhang, W., Ji, Q., Ren, R., Ding, J., et al., 2019. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643-3656.
|
Ren, J., Meng, X., Hu, F., Liu, Q., Cao, Y., Li, H., Yan, C., Li, J., Wang, K., Yu, H., et al., 2021. Expanding the scope of genome editing with SpG and SpRY variants in rice. Sci. China Life Sci. 64, 1784-1787.
|
Richter, M.F., Zhao, K.T., Eton, E., Lapinaite, A., Newby, G.A., Thuronyi, B.W., Wilson, C., Koblan, L.W., Zeng, J., Bauer, D.E., et al., 2020. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883-891.
|
Ryu, S.M., Koo, T., Kim, K., Lim, K., Baek, G., Kim, S.T., Kim, H.S., Kim, D.E., Lee, H., Chung, E., et al., 2018. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536-539.
|
Safiri, S., Kolahi, A.A., Smith, E., Hill, C., Bettampadi, D., Mansournia, M.A., Hoy, D., Ashrafi-Asgarabad, A., Sepidarkish, M., Almasi-Hashiani, A., et al., 2020. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819-828.
|
Sangree, A.K., Griffith, A.L., Szegletes, Z.M., Roy, P., DeWeirdt, P.C., Hegde, M., McGee, A.V., Hanna, R.E., Doench, J.G., 2022. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat. Commun. 13, 1318.
|
Saunderson, E.A., Stepper, P., Gomm, J.J., Hoa, L., Morgan, A., Allen, M.D., Jones, J.L., Gribben, J.G., Jurkowski, T.P., Ficz, G., 2017. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun. 8, 1450.
|
Schene, I.F., Joore, I.P., Oka, R., Mokry, M., van Vugt, A.H.M., van Boxtel, R., van der Doef, H.P.J., van der Laan, L.J.W., Verstegen, M.M.A., van Hasselt, P.M., et al., 2020. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352.
|
Schmidt, M.B., Chen, E.H., Lynch, S.E., 2006. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis Cartilage 14, 403-412.
|
Schneider, T., Welker, P., Haag, R., Dernedde, J., Hug, T., Licha, K., Kohl, B., Arens, S., Ertel, W., Schulze-Tanzil, G., 2015a. Effects of dendritic polyglycerol sulfate on articular chondrocytes. Inflamm. Res. 64, 917-928.
|
Schneider, T., Welker, P., Licha, K., Haag, R., Schulze-Tanzil, G., 2015b. Influence of dendritic polyglycerol sulfates on knee osteoarthritis: an experimental study in the rat osteoarthritis model. BMC Musculoskelet. Disord. 16, 387.
|
Schofield, D.J., Shrestha, R.N., Percival, R., Passey, M.E., Callander, E.J., Kelly, S.J., 2013. The personal and national costs of lost labour force participation due to arthritis: an economic study. BMC Public Health 13, 188.
|
Seidl, C.I., Fulga, T.A., Murphy, C.L., 2019. CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation. Osteoarthritis Cartilage 27, 140-147.
|
Senis, E., Fatouros, C., Grosse, S., Wiedtke, E., Niopek, D., Mueller, A.K., Borner, K., Grimm, D., 2014. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol. J. 9, 1402-1412.
|
Seol, D., Choe, H.H., Zheng, H., Brouillette, M.J., Fredericks, D.C., Petersen, E.B., Song, I., Jaidev, L.R., Salem, A., Martin, J.A., 2021. Intra-articular adeno-associated virus-mediated proteoglycan 4 gene therapy for preventing post-traumatic osteoarthritis. Hum. Gene Ther. 33, 529-540.
|
Sgro, A., Blancafort, P., 2020. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res. 48, 12453-12482.
|
Shen, S., Wu, Y., Chen, J., Xie, Z., Huang, K., Wang, G., Yang, Y., Ni, W., Chen, Z., Shi, P., et al., 2019. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene. Ann. Rheum. Dis. 78, 826-836.
|
Shimo, T., Takebe, H., Okui, T., Kunisada, Y., Ibaragi, S., Obata, K., Kurio, N., Shamsoon, K., Fujii, S., Hosoya, A., et al., 2020. Expression and role of IL-1beta signaling in chondrocytes associated with retinoid signaling during fracture healing. Int. J. Mol. Sci. 21, 2365.
|
Shin, H.Y., Wang, C.C., Lee, H.K., Yoo, K.H., Zeng, X.K., Kuhns, T., Yang, C.M., Mohr, T., Liu, C.Y., Hennighausen, L., 2017. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 8, 15464.
|
Shin, H.J., Park, H., Shin, N., Kwon, H.H., Yin, Y., Hwang, J.A., Kim, S.I., Kim, S.R., Kim, S., Joo, Y., et al., 2020a. p47phox siRNA-Loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers. 12, 443.
|
Shin, H.J., Park, H., Shin, N., Shin, J., Gwon, D.H., Kwon, H.H., Yin, Y., Hwang, J.A., Hong, J., Heo, J.Y., et al., 2020b. p66shc siRNA nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis. Int. J. Nanomedicine 15, 2379-2390.
|
Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., et al., 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385-397.
|
Si, H.B., Zeng, Y., Liu, S.Y., Zhou, Z.K., Chen, Y.N., Cheng, J.Q., Lu, Y.R., Shen, B., 2017. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage 25, 1698-1707.
|
Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J.L., Protheroe, J., Jordan, K.P., 2015. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 23, 507-515.
|
Singsuksawat, E., Onnome, S., Posiri, P., Suphatrakul, A., Srisuk, N., Nantachokchawapan, R., Praneechit, H., Sae-Kow, C., Chidpratum, P., Sa-Ngiamsuntorn, K., et al., 2021. Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Molecular therapy. Mol. Ther. Methods Clin. Dev. 21, 729-740.
|
Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88.
|
Smargon, A.A., Cox, D.B., Pyzocha, N.K., Zheng, K., Slaymaker, I.M., Gootenberg, J.S., Abudayyeh, O.A., Essletzbichler, P., Shmakov, S., Makarova, K.S., et al., 2017. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618-630.
|
Song, H., Park, K.H., 2020. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 67, 12-23.
|
Song, C.Q., Jiang, T., Richter, M., Rhym, L.H., Koblan, L.W., Zafra, M.P., Schatoff, E.M., Doman, J.L., Cao, Y., Dow, L.E., et al., 2020. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng.4, 125-130.
|
Song, M., Lim, J.M., Min, S., Oh, J.S., Kim, D.Y., Woo, J.S., Nishimasu, H., Cho, S.R., Yoon, S., Kim, H.H., 2021. Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat. Commun.12, 5617.
|
Sripathy, S.P., Stevens, J., Schultz, D.C., 2006. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell Biol. 26, 8623-8638.
|
Standage-Beier, K., Tekel, S.J., Brafman, D.A., Wang, X., 2021. Prime editing guide RNA design automation using PINE-CONE. ACS Synth. Biol. 10, 422-427.
|
Stepper, P., Kungulovski, G., Jurkowska, R.Z., Chandra, T., Krueger, F., Reinhardt, R., Reik, W., Jeltsch, A., Jurkowski, T.P., 2017. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res. 45, 1703-1713.
|
Strezoska, Z., Dickerson, S.M., Maksimova, E., Chou, E., Gross, M.M., Hemphill, K., Hardcastle, T., Perkett, M., Stombaugh, J., Miller, G.W., et al., 2020. CRISPR-mediated transcriptional activation with synthetic guide RNA. J. Biotechnol. 319, 25-35.
|
Suh, S., Choi, E.H., Leinonen, H., Foik, A.T., Newby, G.A., Yeh, W.H., Dong, Z., Kiser, P.D., Lyon, D.C., Liu, D.R., et al., 2021. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat. Biomed. Eng. 5, 169-178.
|
Sun, A., Li, C.P., Chen, Z., Zhang, S., Li, D.Y., Yang, Y., Li, L.Q., Zhao, Y., Wang, K., Li, Z., et al., 2023. The compact Caspi (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation. Cell Res. 33, 229-244.
|
Taghbalout, A., Du, M., Jillette, N., Rosikiewicz, W., Rath, A., Heinen, C.D., Li, S., Cheng, A.W., 2019. Enhanced CRISPR-based DNA demethylation by Casilio-ME-mediated RNA-guided coupling of methylcytosine oxidation and DNA repair pathways. Nat. Commun. 10, 4296.
|
Tak, Y.E., Kleinstiver, B.P., Nunez, J.K., Hsu, J.Y., Horng, J.E., Gong, J.Y., Weissman, J.S., Joung, J.K., 2017. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat. Methods 14, 1163-1166.
|
Tak, Y.E., Horng, J.E., Perry, N.T., Schultz, H.T., Iyer, S., Yao, Q., Zou, L.S., Aryee, M.J., Pinello, L., Joung, J.K., 2021. Augmenting and directing long-range CRISPR-mediated activation in human cells. Nat. Methods 18, 1075-1081.
|
Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S., Vale, R.D., 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646.
|
Tao, R., Wang, Y., Hu, Y., Jiao, Y., Zhou, L., Jiang, L., Li, L., He, X., Li, M., Yu, Y., et al., 2022a. WT-PE: prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct. Target. Ther. 7, 108.
|
Tao, R., Wang, Y., Jiao, Y., Hu, Y., Li, L., Jiang, L., Zhou, L., Qu, J., Chen, Q., Yao, S., 2022b. Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Res. 50, 6423-6434.
|
Tardif, G., Pelletier, J.P., Dupuis, M., Geng, C., Cloutier, J.M., Martel-Pelletier, J., 1999. Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells. Arthritis Rheum. 42, 1147-1158.
|
Tarjan, D.R., Flavahan, W.A., Bernstein, B.E., 2019. Epigenome editing strategies for the functional annotation of CTCF insulators. Nat. Commun.10, 4258.
|
Tashkandi, M., Ali, F., Alsaqer, S., Alhousami, T., Cano, A., Martin, A., Salvador, F., Portillo, F., L, C.G., Goldring, M.B., et al., 2019. Lysyl oxidase-like 2 protects against progressive and aging related knee joint osteoarthritis in mice. Int. J. Mol. Sci. 20, 4798.
|
te Boekhorst, B.C., Jensen, L.B., Colombo, S., Varkouhi, A.K., Schiffelers, R.M., Lammers, T., Storm, G., Nielsen, H.M., Strijkers, G.J., Foged, C., et al., 2012. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model. J. Control. Release 161, 772-780.
|
Thakore, P.I., D'Ippolito, A.M., Song, L., Safi, A., Shivakumar, N.K., Kabadi, A.M., Reddy, T.E., Crawford, G.E., Gersbach, C.A., 2015. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149.
|
Thakore, P.I., Kwon, J.B., Nelson, C.E., Rouse, D.C., Gemberling, M.P., Oliver, M.L., Gersbach, C.A., 2018. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674.
|
Thuronyi, B.W., Koblan, L.W., Levy, J.M., Yeh, W.H., Zheng, C., Newby, G.A., Wilson, C., Bhaumik, M., Shubina-Oleinik, O., Holt, J.R., et al., 2019. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat. Biotechnol. 37, 1070-1079.
|
Tofino-Vian, M., Guillen, M.I., Perez Del Caz, M.D., Silvestre, A., Alcaraz, M.J., 2018. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol. Biochem. 47, 11-25.
|
Tong, H., Huang, J., Xiao, Q., He, B., Dong, X., Liu, Y., Yang, X., Han, D., Wang, Z., Wang, X., et al., 2023a. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 41, 108-119.
|
Tong, H., Wang, X., Liu, Y., Liu, N., Li, Y., Luo, J., Ma, Q., Wu, D., Li, J., Xu, C., et al., 2023b. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. Doi: 10.1038/s41587-022-01595-6.
|
Tong, H., Liu, N., Wei, Y., Zhou, Y., Li, Y., Wu, D., Jin, M., Cui, S., Li, H., Li, G., et al., 2023c. Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. Natl. Sci. Rev. 10, nwad143.
|
Trippel, S.B., 1995. Growth factor actions on articular cartilage. J. Rheumatol. Suppl. 43, 129-132.
|
Trippel, S.B., Corvol, M.T., Dumontier, M.F., Rappaport, R., Hung, H.H., Mankin, H.J., 1989. Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatric Res. 25, 76-82.
|
Truong, D.J.J., Kuhner, K., Kuhn, R., Werfel, S., Engelhardt, S., Wurst, W., Ortiz, O., 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. 43, 6450-6458.
|
Tuan, R.S., Boland, G., Tuli, R., 2003. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5, 32-45.
|
Urrutia, R., 2003. KRAB-containing zinc-finger repressor proteins. Genome Biol. 4, 231.
|
van de Laar, I.M., Oldenburg, R.A., Pals, G., Roos-Hesselink, J.W., de Graaf, B.M., Verhagen, J.M., Hoedemaekers, Y.M., Willemsen, R., Severijnen, L.A., Venselaar, H., et al., 2011. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121-126.
|
van der Woude, J.A.D., Wiegant, K., van Heerwaarden, R.J., Spruijt, S., van Roermund, P.M., Custers, R.J.H., Mastbergen, S.C., Lafeber, F., 2017. Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 25, 876-886.
|
Van Eck, J., 2020. Applying gene editing to tailor precise genetic modifications in plants. J. Biol. Chem. 295, 13267-13276.
|
van Kampen, S.J., van Rooij, E., 2021. CRISPR base editing lowers cholesterol in monkeys. Nat. Biotechnol. 39, 920-921.
|
van Meurs, J.B., 2017. Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoarthritis Cartilage 25, 181-189.
|
van Meurs, J.B., Uitterlinden, A.G., 2012. Osteoarthritis year 2012 in review: genetics and genomics. Osteoarthritis Cartilage 20, 1470-1476.
|
Varela-Eirin, M., Varela-Vazquez, A., Guitian-Caamano, A., Paino, C.L., Mato, V., Largo, R., Aasen, T., Tabernero, A., Fonseca, E., Kandouz, M., et al., 2018. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis. 9, 1166.
|
Venkatesan, N., Barre, L., Benani, A., Netter, P., Magdalou, J., Fournel-Gigleux, S., Ouzzine, M., 2004. Stimulation of proteoglycan synthesis by glucuronosyltransferase-I gene delivery: a strategy to promote cartilage repair. Proc. Natl. Acad. Sci. U. S. A. 101, 18087-18092.
|
Villiger, L., Grisch-Chan, H.M., Lindsay, H., Ringnalda, F., Pogliano, C.B., Allegri, G., Fingerhut, R., Haberle, J., Matos, J., Robinson, M.D., et al., 2018. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519-1525.
|
Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., Klasic, M., Zoldos, V., 2016. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615-5628.
|
Walton, R.T., Christie, K.A., Whittaker, M.N., Kleinstiver, B.P., 2020. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296.
|
Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., Jaenisch, R., 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918.
|
Wang, G., Evans, C.H., Benson, J.M., Hutt, J.A., Seagrave, J., Wilder, J.A., Grieger, J.C., Samulski, R.J., Terse, P.S., 2016. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. Mol. Ther. Methods Clin. Dev. 3, 15052.
|
Wang, Y., Yu, D., Liu, Z., Zhou, F., Dai, J., Wu, B., Zhou, J., Heng, B.C., Zou, X.H., Ouyang, H., et al., 2017. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 8, 189.
|
Wang, H., Leng, Y., Gong, Y., 2018. Bone marrow fat and hematopoiesis. Front. Endocrinol. 9, 694.
|
Wang, Q.X., Liu, X., Zhou, J.H., Yang, C., Wang, G.X., Tan, Y.L., Wu, Y., Zhang, S.J., Yi, K.K., Kang, C.S., 2019. The CRISPR-Cas13a gene-editing system induces collateral cleavage of RNA in glioma cells. Adv. Sci. 6, 1901299.
|
Wang, W., Zhu, Y., Sun, Z., Jin, C., Wang, X., 2021. Positive feedback regulation between USP15 and ERK2 inhibits osteoarthritis progression through TGF-beta/SMAD2 signaling. Arthritis Res. Ther. 23, 84.
|
Wang, J., He, Z., Wang, G., Zhang, R., Duan, J., Gao, P., Lei, X., Qiu, H., Zhang, C., Zhang, Y., et al., 2022. Efficient targeted insertion of large DNA fragments without DNA donors. Nat. Methods 19, 331-340.
|
Wang, Y.J., Wang, Y.N., Pan, D., Yu, H.P., Zhang, Y.F., Chen, W.Z., Li, F., Wu, Z.W., Ji, Q.J., 2022. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40, 111418.
|
Watson Levings, R.S., Broome, T.A., Smith, A.D., Rice, B.L., Gibbs, E.P., Myara, D.A., Hyddmark, E.V., Nasri, E., Zarezadeh, A., Levings, P.P., et al., 2018. Gene therapy for osteoarthritis: pharmacokinetics of intra-articular self-complementary adeno-associated virus interleukin-1 receptor antagonist delivery in an equine model. Hum Gene Ther. Clin. Dev. 29, 90-100.
|
Wei, Y., Luo, L., Gui, T., Yu, F., Yan, L., Yao, L., Zhong, L., Yu, W., Han, B., Patel, J.M., et al., 2021. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci. Transl. Med.13, eabb3946.
|
Weisheit, I., Kroeger, J.A., Malik, R., Klimmt, J., Crusius, D., Dannert, A., Dichgans, M., Paquet, D., 2020. Detection of deleterious on-target effects after HDR-mediated CRISPR editing. Cell Rep. 31, 107689.
|
Wilkinson, J.M., Zeggini, E., 2021. The genetic epidemiology of joint shape and the development of osteoarthritis. Calcif. Tissue Int. 109, 257-276.
|
Winkle, M., El-Daly, S.M., Fabbri, M., Calin, G.A., 2021. Noncoding RNA therapeutics - challenges and potential solutions. Nat. Rev. Drug Discov. 20, 629-651.
|
Woo, J., Lau, E., Lau, C.S., Lee, P., Zhang, J., Kwok, T., Chan, C., Chiu, P., Chan, K.M., Chan, A., et al., 2003. Socioeconomic impact of osteoarthritis in Hong Kong: utilization of health and social services, and direct and indirect costs. Arthritis Rheum. 49, 526-534.
|
Wu, T.J., Monokian, G., Mark, D.F., Wobbe, C.R., 1994. Transcriptional activation by herpes simplex virus type 1 VP16 in vitro and its inhibition by oligopeptides. Mol. Cell Biol. 14, 3484-3493.
|
Wu, Z., Yang, H., Colosi, P., 2010. Effect of genome size on AAV vector packaging. Mol. Ther.18, 80-86.
|
Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W., Trevino, A.E., Konermann, S., Chen, S., et al., 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670-676.
|
Wu, J., Kuang, L., Chen, C., Yang, J., Zeng, W.N., Li, T., Chen, H., Huang, S., Fu, Z., Li, J., et al., 2019. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 206, 87-100.
|
Wu, Z., Zhang, Y., Yu, H., Pan, D., Wang, Y., Wang, Y., Li, F., Liu, C., Nan, H., Chen, W., et al., 2021. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat. Chem. Biol. 17, 1132-1138.
|
Wu, W.Y., Mohanraju, P., Liao, C., Adiego-Perez, B., Creutzburg, S.C.A., Makarova, K.S., Keessen, K., Lindeboom, T.A., Khan, T.S., Prinsen, S., et al., 2022. The miniature CRISPR-Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487-4502.
|
Xia, B., Di, C., Zhang, J., Hu, S., Jin, H., Tong, P., 2014. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif. Tissue Int. 95, 495-505.
|
Xing, D., Liang, J.Q., Li, Y., Lu, J., Jia, H.B., Xu, L.Y., Ma, X.L., 2014. Identification of long noncoding RNA associated with osteoarthritis in humans. Orthop. Surg. 6, 288-293.
|
Xu, K., Ren, C.H., Liu, Z.T., Zhang, T., Zhang, T.T., Li, D., Wang, L., Yan, Q., Guo, L.J., Shen, J.C., et al., 2015. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cell Mol. Life Sci. 72, 383-399.
|
Xu, X., Tao, Y., Gao, X., Zhang, L., Li, X., Zou, W., Ruan, K., Wang, F., Xu, G.L., Hu, R., 2016. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009.
|
Xu, W., Zhang, C.W., Yang, Y.X., Zhao, S., Kang, G.T., He, X.Q., Song, J.L., Yang, J.X., 2020. Versatile nucleotides substitution in plant using an improved prime editing system. Mol. Plant 13, 675-678.
|
Xu, C., Zhou, Y., Xiao, Q., He, B., Geng, G., Wang, Z., Cao, B., Dong, X., Bai, W., Wang, Y., et al., 2021. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat. Methods 18, 499-506.
|
Xu, X., Chemparathy, A., Zeng, L., Kempton, H.R., Shang, S., Nakamura, M., Qi, L.S., 2021. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81 4333-4345.
|
Xu, Z., Kuang, Y., Ren, B., Yan, D., Yan, F., Spetz, C., Sun, W., Wang, G., Zhou, X., Zhou, H., 2021. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 22, 6.
|
Xue, N., Liu, X., Zhang, D., Wu, Y., Zhong, Y., Wang, J., Fan, W., Jiang, H., Zhu, B., Ge, X., et al., 2023. Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nat. Commun. 14, 1224.
|
Yamazaki, T., Hatano, Y., Handa, T., Kato, S., Hoida, K., Yamamura, R., Fukuyama, T., Uematsu, T., Kobayashi, N., Kimura, H., et al., 2017. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS One 12, e0177764.
|
Yan, J., Chen, S.A., Local, A., Liu, T., Qiu, Y., Dorighi, K.M., Preissl, S., Rivera, C.M., Wang, C., Ye, Z., et al., 2018. Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res. 28, 204-220.
|
Yan, W.X., Chong, S., Zhang, H., Makarova, K.S., Koonin, E.V., Cheng, D.R., Scott, D.A., 2018. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327-339.
|
Yan, W.X., Hunnewell, P., Alfonse, L.E., Carte, J.M., Keston-Smith, E., Sothiselvam, S., Garrity, A.J., Chong, S., Makarova, K.S., Koonin, E.V., et al., 2019. Functionally diverse type V CRISPR-Cas systems. Science 363, 88-91.
|
Yan, S., Zheng, X., Lin, Y., Li, C., Liu, Z., Li, J., Tu, Z., Zhao, Y., Huang, C., Chen, Y., et al., 2023. Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed. Eng. 7, 629-646.
|
Yang, H., Patel, D.J., 2019. CasX: a new and small CRISPR gene-editing protein. Cell Res. 29, 345-346.
|
Yang, M., Zhang, L., Stevens, J., Gibson, G., 2014. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line. Bone 69, 118-125.
|
Yang, Y., Ren, J., Sun, Y., Xue, Y., Zhang, Z., Gong, A., Wang, B., Zhong, Z., Cui, Z., Xi, Z., et al., 2018. A connexin43/YAP axis regulates astroglial-mesenchymal transition in hemoglobin induced astrocyte activation. Cell Death Differ. 25, 1870-1884.
|
Yao, J.Y., Wang, Y., An, J., Mao, C.M., Hou, N., Lv, Y.X., Wang, Y.L., Cui, F., Huang, M., Yang, X., 2003. Mutation analysis of the Smad3 gene in human osteoarthritis. Eur. J. Hum. Genet. 11, 714-717.
|
Yao, X., Wang, X., Liu, J., Shi, L., Huang, P., Yang, H., 2018. CRISPR/Cas9-mediated targeted integration in vivo using a homology-mediated end joining-based strategy. J. Vis. Exp. 56844.
|
Yeh, W.H., Shubina-Oleinik, O., Levy, J.M., Pan, B., Newby, G.A., Wornow, M., Burt, R., Chen, J.C., Holt, J.R., Liu, D.R., 2020. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 12, eaay9101.
|
Yoon, D.S., Lee, K.M., Cho, S., Ko, E.A., Kim, J., Jung, S., Shim, J.H., Gao, G., Park, K.H., Lee, J.W., 2021. Cellular and tissue selectivity of AAV serotypes for gene delivery to chondrocytes and cartilage. Int. J. Med. Sci. 18, 3353-3360.
|
Yu, D., Peat, G., Bedson, J., Jordan, K.P., 2015. Annual consultation incidence of osteoarthritis estimated from population-based health care data in England. Rheumatology 54, 2051-2060.
|
Yu, Y., Leete, T.C., Born, D.A., Young, L., Barrera, L.A., Lee, S.J., Rees, H.A., Ciaramella, G., Gaudelli, N.M., 2020. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052.
|
Zalatan, J.G., Lee, M.E., Almeida, R., Gilbert, L.A., Whitehead, E.H., La Russa, M., Tsai, J.C., Weissman, J.S., Dueber, J.E., Qi, L.S., et al., 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350.
|
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A.,et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
|
Zhang, Y., Jordan, J.M., 2008. Epidemiology of osteoarthritis. Rheum Dis. Clin. North Am. 34, 515-529.
|
Zhang, X., Mao, Z., Yu, C., 2004. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J. Orthop Res. 22, 742-750.
|
Zhang, D.W., Yang, Q.S., Zhu, J.Y., Cao, X.R., Li, L.W., Zhu, Q.S., 2007. Amelioration of osteoarthritis by intra-articular hyaluronan synthase 2 gene therapy. Med. Hypotheses 69, 1111-1113.
|
Zhang, D., Zhang, H., Li, T., Chen, K., Qiu, J.L., Gao, C., 2017. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol. 18, 191.
|
Zhang, X., Wang, J., Cheng, Q., Zheng, X., Zhao, G., Wang, J., 2017. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 3, 17018.
|
Zhang, C., Konermann, S., Brideau, N.J., Lotfy, P., Wu, X., Novick, S.J., Strutzenberg, T., Griffin, P.R., Hsu, P.D., Lyumkis, D., 2018. Structural basis for the RNA-guided ribonuclease activity of CRISPR-Cas13d. Cell 175, 212-223.
|
Zhang, X., Wang, W., Shan, L., Han, L., Ma, S.F., Zhang, Y., Hao, B.T., Lin, Y., Rong, Z.L., 2018. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9, 380-383.
|
Zhang, S., Teo, K.Y.W., Chuah, S.J., Lai, R.C., Lim, S.K., Toh, W.S., 2019. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 200, 35-47.
|
Zhang, X., Liu, X., Ni, X., Feng, P., Wang, Y.U., 2019. Long non-coding RNA H19 modulates proliferation and apoptosis in osteoarthritis via regulating miR-106a-5p. J. Biosci. 44, 128.
|
Zhang, J., Liu, G.H., Qu, J., Song, M., 2020. Treating osteoarthritis via gene therapy with rejuvenation factors. Gene Ther. 27, 309-311.
|
Zhang, Z., Chen, J., Zhu, Z., Zhu, Z., Liao, X., Wu, J., Cheng, J., Zhang, X., Mei, H., Yang, G., 2020. CRISPR-Cas13-mediated knockdown of lncRNA-GACAT3 inhibited cell proliferation and motility, and induced apoptosis by increasing p21, Bax, and E-Cadherin expression in bladder cancer. Front. Mol. Biosci. 7, 627774.
|
Zhang, X., Lv, S., Luo, Z., Hu, Y., Peng, X., Lv, J., Zhao, S., Feng, J., Huang, G., Wan, Q.L., et al., 2021. MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression in vivo. Nucleic Acids Res. 49, 4171-4185.
|
Zhang, G., Liu, Y., Huang, S., Qu, S., Cheng, D., Yao, Y., Ji, Q., Wang, X., Huang, X., Liu, J., 2022. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856.
|
Zhao, R.L., Zhang, X.M., Jia, L.N., Song, W., Sun, Y.L., Meng, X.Y., Peng, X.X., 2019. (p)NNS-conjugated chitosan mediated IGF-1 and miR-140 overexpression in articular chondrocytes improves cartilage repair. Biomed. Res. Int., 2761241.
|
Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
|
Zhi, S., Chen, Y., Wu, G., Wen, J., Wu, J., Liu, Q., Li, Y., Kang, R., Hu, S., Wang, J., et al., 2021. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol. Ther. 30, 283-294.
|
Zhou, H., Liu, J., Zhou, C., Gao, N., Rao, Z., Li, H., Hu, X., Li, C., Yao, X., Shen, X.,et al., 2018. In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat. Neurosci. 21, 440-446.
|
Zhou, P.H., Qiu, B., Deng, R.H., Li, H.J., Xu, X.F., Shang, X.F., 2018. Chondroprotective effects of hyaluronic acid-chitosan nanoparticles containing plasmid DNA encoding cytokine response modifier A in a rat knee osteoarthritis model. Cell Physiol. Biochem. 47, 1207-1216.
|
Zhou, C., Sun, Y., Yan, R., Liu, Y., Zuo, E., Gu, C., Han, L., Wei, Y., Hu, X., Zeng, R., et al., 2019. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278.
|
Zhou, H., Su, J., Hu, X., Zhou, C., Li, H., Chen, Z., Xiao, Q., Wang, B., Wu, W., Sun, Y., et al., 2020. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181, 590-603.
|
Zhuang, Y., Liu, J., Wu, H., Zhu, Q., Yan, Y., Meng, H., Chen, P.R., Yi, C., 2022. Increasing the efficiency and precision of prime editing with guide RNA pairs. Nat. Chem. Biol. 18, 29-37.
|
Zuo, E., Sun, Y., Yuan, T., He, B., Zhou, C., Ying, W., Liu, J., Wei, W., Zeng, R., Li, Y., et al., 2020. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat. Methods 17, 600-604.
|