9.9
CiteScore
7.1
Impact Factor
Yang Lu, Zeyuan Wang, et al.
 doi: 10.1016/j.jgg.2025.07.003
Abstract (18) PDF (0)
Abstract:

Hereditary cardiomyopathies and arrhythmias are major contributors to cardiovascular morbidity and mortality. The advent of next-generation sequencing (NGS) has made genetic testing more accessible, which is crucial for precise diagnosis and targeted therapeutic strategies. The aim of this study is to explore the landscape of genetic variants, the relationship between specific variants and clinical phenotypes, and the impact on clinical decision-making in China. A total of 1,536 probands (median age, 37 years; 1,025 males [66.7%]) with suspected hereditary cardiomyopathy or arrhythmia (covering 15 clinical phenotypes) are recruited from 146 hospitals across 30 provinces and cities in China. Positive results are confirmed in 390 of 1536 probands, leading to a diagnostic yield of 25.4%. Forty-two and three tenths percent (n = 169) of family members carry the same variants as positive probands. Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the predominant phenotypes, with MYBPC3 variants having the highest frequency in HCM and TTN variants in DCM. In 76.9% of the positive probands, the identified variants are helpful in clinical management, family screening and fertility. This large-scale study provides significant insights into the genetic landscape of hereditary cardiomyopathies and arrhythmias in China.

Yaling Wang, Xueying Huang, et al.
 doi: 10.1016/j.jgg.2023.09.002
Abstract (124) PDF (7)
Abstract:
During spermiogenesis, haploid spermatids undergo dramatic morphological changes to form slender sperm flagella and cap-like acrosomes, which are required for successful fertilization. Severe deformities in flagella cause a male infertility syndrome, multiple morphological abnormalities of the flagella (MMAF), while acrosomal hypoplasia in some cases leads to sub-optimal embryonic developmental potential. However, evidence regarding the occurrence of acrosomal hypoplasia in MMAF is limited. Here, we report the generation of base-edited mice knocked out for coiled-coil domain-containing 38 (Ccdc38) via inducing a nonsense mutation and find that the males are infertile. The Ccdc38-KO sperm display acrosomal hypoplasia and typical MMAF phenotypes. We find that the acrosomal membrane is loosely anchored to the nucleus and fibrous sheaths are disorganized in Ccdc38-KO sperm. Further analyses reveal that Ccdc38 knockout causes a decreased level of TEKT3, a protein associated with acrosome biogenesis, in testes and an aberrant distribution of TEKT3 on sperm. We finally show that intracytoplasmic sperm injection overcomes Ccdc38-related infertility. Our study thus reveals a previously unknown role for CCDC38 in acrosome biogenesis and provides additional evidence for the occurrence of acrosomal hypoplasia in MMAF.
Xingyan Ye, Kezhen Qin, et al.
 doi: 10.1016/j.jgg.2024.12.016
Abstract (4) PDF (0)
Abstract:

Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here, we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.

Wenqi Ouyang, Hongda Sun, et al.
 doi: 10.1016/j.jgg.2024.12.011
Abstract (6) PDF (0)
Abstract:

Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species. These include previously novel structural RNA fragments as well as numerous cell- and tissue-specific sRNAs that are active during distinct developmental stages, thereby enhancing our understanding of the precise and dynamic regulatory roles of sRNAs in plant development regulation. Additionally, a notable feature of sRNAs is their capacity for amplification and movement between cells and tissues, which facilitates long-distance communication—an adaptation critical to plants due to their sessile nature. In this review, we will discuss the classification and mechanisms of action of sRNAs, using legumes as a primary example due to their essential engagement for the unique organ establishment of root nodules and long-distance signaling, and further illustrating the potential applications of sRNAs in modern agricultural breeding and environmentally sustainable plant protection strategies.

Yang-Kai Liu, Wei-Wei Fu, et al.
 doi: 10.1016/j.jgg.2024.11.008
Abstract (4) PDF (0)
Abstract:

Chakouyi (CKY) horses from the Qinghai‒Xizang Plateau are well known for their unique lateral gaits and high-altitude adaptation, but genetic mechanisms underlying these phenotypes remain unclear. This study presents a comparison of 60 newly resequenced genomes of gaited CKY horses with 139 public genomes from 19 horse breeds. Population structure analyses (admixture, PCA, and neighbor-joining tree) reveal a close genetic relationship between CKY and other highland breeds (Tibetan and Chaidamu horses). Compared with other Chinese breeds, CKY horses present reduced nucleotide diversity (θπ) and lower inbreeding (FROH coefficient), suggesting possible selective pressures. A key region on chromosome 23 (Chr23: 22.3 –22.6 Mb) is associated with the lateral gaits and harbors a highly prevalent nonsense mutation (Chr 23:22,391,254 C>A, Ser301STOP) in the DMRT3 gene, with an 88% homozygosity rate, which is strongly correlated with the distinctive gait of CKY horses. Furthermore, selection signals reveal that the EPAS1 gene is related to high-altitude adaptation, and the CAT gene contributes to altitude resilience in CKY horses. These findings suggest that preserving genetic diversity is essential for maintaining the unique gaits and high-altitude adaptations of CKY horses.

Zu-Wen Zhou, Zhi-Guang Yu, et al.
 doi: 10.1016/j.jgg.2024.07.001
Abstract (4) PDF (0)
Abstract:
MORE+
Special Issues
Call for Papers
Zebrafish Biology

Edited by Feng Liu, Yonghua Sun

Volume 51, Issue 9,

Pages 889-982 (September 2024)

Human Genetic Disorders

Edited by Huijun Yuan, Zhenglin Yang, Zhi-Ying Wu, Wei Li

Volume 51, Issue 2,

Pages 111-264 (February 2024)

Wheat Biology

Edited by Zhongfu Ni, Guangmin Xia, Zhiyong Liu, Fei Lu 

Volume 50, Issue 11,

Pages 815-924 (November 2023)

MORE+