Huang, S., Liang, Z., Chen, S., Sun, H., Fan, X., Wang, C., Xu, G., Zhang, Y., 2019. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation. Plant Physiol 180, 882-895.
|
Karlova, R., Boer, D., Hayes, S., Testerink, C., 2021. Root plasticity under abiotic stress. Plant Physiol 187, 1057-1070.
|
Lai, X., Daher, H., Galien, A., Hugouvieux, V., Zubieta, C., 2019. Structural Basis for Plant MADS Transcription Factor Oligomerization. Comput Struct Biotechnol J 17, 946-953.
|
Lei, L., Li, G., Zhang, H., Powers, C., Fang, T., Chen, Y., Wang, S., Zhu, X., Carver, B.F., Yan, L., 2018. Nitrogen use efficiency is regulated by interacting proteins relevant to development in wheat. Plant Biotechnol J 16, 1214-1226.
|
Li, C., Li, L., Reynolds, M.P., Wang, J., Chang, X., Mao, X., Jing, R., 2021. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. J Exp Bot 72, 5117-5133.
|
Liu, X., Hu, B., Chu, C., 2022. Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics 49, 394-404.
|
Liu, Y., von Wiren, N., 2022. Integration of nutrient and water availabilities via auxin into the root developmental program. Curr Opin Plant Biol 65, 102117.
|
Lynch, J.P., 2022. Harnessing root architecture to address global challenges. Plant J 109, 415-431.
|
Pachamuthu, K., Hari Sundar, V., Narjala, A., Singh, R.R., Das, S., Avik Pal, H.C.Y., Shivaprasad, P.V., 2022. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice. J Exp Bot 73, 3511-3530.
|
Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., et al., 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15, 1538-1551.
|
Peng, J.H., Sun, D., Nevo, E., 2011. Domestication evolution, genetics and genomics in wheat. Molecular Breeding 28, 281-301.
|
Riechmann, J.L., Meyerowitz, E.M., 1997. MADS domain proteins in plant development. Biol Chem 378, 1079-1101.
|
Rogers, E.D., Benfey, P.N., 2015. Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32, 93-98.
|
Schilling, S., Pan, S., Kennedy, A., Melzer, R., 2018. MADS-box genes and crop domestication: the jack of all traits. Journal of Experimental Botany 69, 1447-1469.
|
Wu, J., Yang, S., Chen, N., Jiang, Q., Huang, L., Qi, J., Xu, G., Shen, L., Yu, H., Fan, X., et al.,ik 2023. Nuclear translocation of OsMADS25 facilitated by OsNAR2.1 in response to nitrate signal promotes root growth by regulating the expression of OsMADS27 and OsARF7 in rice. Plant Commun, 100642.
|
Yu, L.H., Miao, Z.Q., Qi, G.F., Wu, J., Cai, X.T., Mao, J.L., Xiang, C.B., 2014. MADS-box transcription factor AGL21 regulates lateral root development and responds to multiple external and physiological signals. Mol Plant 7, 1653-1669.
|
Zhang, G., Xu, N., Chen, H., Wang, G., Huang, J., 2018. OsMADS25 regulates root system development via auxin signalling in rice. Plant J 95, 1004-1022.
|
Zhang, H., Forde, B.G., 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279, 407-409.
|