Alexander, P.G., and Tuan, R.S., 2010. Role of environmental factors in axial skeletal dysmorphogenesis. Birth Defects Res. C Embryo Today. 90, 118-132.
|
Beisaw, A., Tsaytler, P., Koch, F., Schmitz, S.U., Melissari, M.T., Senft, A.D., Wittler, L., Pennimpede, T., Macura, K., Herrmann, B.G., et al., 2018. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 19, 118-134.
|
Chalamalasetty, R.B., Garriock, R.J., Dunty, W.C., Kennedy, M.W., Jailwala, P., Si, H., Yamaguchi, T.P., 2014. Mesogenin 1 is a master regulator of paraxial presomitic mesoderm differentiation. Development. 141, 4285-4297.
|
Chesley, P., 1935. Development of the short-tailed mutant in the house mouse. J. Exp. Zool. 70, 429-459.
|
Choi, K.S., Lee, C., Harfe, B.D., 2012. Sonic hedgehog in the notochord is sufficient for patterning of the intervertebral discs. Mech. Dev. 129, 255-262.
|
Cornier, A.S., Staehling-Hampton, K., Delventhal, K.M., Saga, Y., Caubet, J.F., Sasaki, N., Ellard, S., Young, E., Ramirez, N., Carlo, S.E., et al., 2008. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am. J. Hum. Genet. 82, 1334-1341.
|
Dai, Z., Li, R., Hou, Y., Li, Q., Zhao, K., Li, T., Li, M.J., Wu, X., 2021. Inducible CRISPRa screen identifies putative enhancers. J. Genet. Genomics. 48, 917-927.
|
Dunty, W.C., Jr., Biris, K.K., Chalamalasetty, R.B., Taketo, M.M., Lewandoski, M., Yamaguchi, T.P., 2008. Wnt3a/beta-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development. 135, 85-94.
|
Feng, X., Cheung, J.P.Y., Je, J.S.H., Cheung, P.W.H., Chen, S., Yue, M., Wang, N., Choi, V.N.T., Yang, X., Song, Y.Q., et al., 2020. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China. J. Orthop. Res. 39, 971-988.
|
Giampietro, P.F., Raggio, C.L., Blank, R.D., McCarty, C., Broeckel, U., Pickart, M.A., 2013. Clinical, genetic and environmental factors associated with congenital vertebral malformations. Mol. Syndromol. 4, 94-105.
|
Haworth, K., Putt, W., Cattanach, B., Breen, M., Binns, M., Lingaas, P., Edwards, Y.H., 2001. Canine homolog of the T-box transcription factor T; failure of the protein to bind to its DNA target leads to a short-tail phenotype. Mamm. Genome. 12, 212-218.
|
Hedequist, D., and Emans, J., 2007. Congenital scoliosis: a review and update. J. Pediatr. Orthop. 27, 106-116.
|
Herrmann, B.G., Labeit, S., Poustka, A., King, T.R., Lehrach, H., 1990. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 343, 617-622.
|
Jose-Edwards, D.S., Oda-Ishii, I., Kugler, J.E., Passamaneck, Y.J., Katikala, L., Nibu, Y., Di Gregorio, A., 2015. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet. 11, e1005730.
|
Kispert, A., and Hermann, B.G., 1993. The Brachyury gene encodes a novel DNA binding protein. The EMBO J. 12, 3211-3220.
|
Kispert, A., Koschorz, B., Herrmann, B.G., 1995. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763-4772.
|
Knezevic, V., De Santo, R., Mackem, S., 1997. Two novel chick T-box genes related to mouse Brachyury are expressed in different, non-overlapping mesodermal domains during gastrulation. Development. 124, 411-419.
|
Lolas, M., Valenzuela, P.D., Tjian, R., Liu, Z., 2014. Charting Brachyury-mediated developmental pathways during early mouse embryogenesis. Proc. Natl. Acad. Sci. U. S. A. 111, 4478-4483.
|
McGaughran, J.M., Oates, A., Donnai, D., Read, A.P., Tassabehji, M., 2003. Mutations in PAX1 may be associated with Klippel-Feil syndrome. Eur. J. Hum. Genet. 11, 468-474.
|
Park, C.H.T., Pruitt, J.H., Bennett, D., 1989. A mouse model for neural tube defects: the curtailed (Tc) mutation produces spina bifida occulta in Tc/+ animals and spina bifida with meningomyelocele in Tc/t. Teratology. 39, 303-312.
|
Pennimpede, T., Proske, J., Konig, A., Vidigal, J.A., Morkel, M., Bramsen, J.B., Herrmann, B.G., Wittler, L., 2012. In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372, 55-67.
|
Postma, A.V., Alders, M., Sylva, M., Bilardo, C.M., Pajkrt, E., van Rijn, R.R., Schulte-Merker, S., Bulk, S., Stefanovic, S., Ilgun, A., et al., 2014. Mutations in the T (brachyury) gene cause a novel syndrome consisting of sacral agenesis, abnormal ossification of the vertebral bodies and a persistent notochordal canal. J. Med. Genet. 51, 90-97.
|
Rigueur, D., and Lyons, K.M., 2014. Whole-mount skeletal staining. Methods Mol. Biol. 1130, 113-121.
|
Schifferl, D., Scholze-Wittler, M., Wittler, L., Veenvliet, J.V., Koch, F., Herrmann, B.G., 2021. A 37 kb region upstream of brachyury comprising a notochord enhancer is essential for notochord and tail development. Development. 148, dev200059.
|
Schultemerker, S., Vaneeden, F.J.M., Halpern, M.E., Kimmel, C.B., Nussleinvolhard, C., 1994. no tail (ntl) is the zebrafish homolog of the mouse-T (Brachyury) Gene. Development 120, 1009-1015.
|
Sharifnia, T., Wawer, M.J., Chen, T., Huang, Q.Y., Weir, B.A., Sizemore, A., Lawlor, M.A., Goodale, A., Cowley, G.S., Vazquez, F., et al., 2019. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 25, 292-300.
|
Sheppard, H.E., Dall'Agnese, A., Park, W.D., Shamim, M.H., Dubrulle, J., Johnson, H.L., Stossi, F., Cogswell, P., Sommer, J., Levy, J., et al., 2021. Targeted brachyury degradation disrupts a highly specific autoregulatory program controlling chordoma cell identity. Cell Rep. Med. 2, 100188.
|
Sparrow, D.B., Chapman, G., Smith, A.J., Mattar, M.Z., Major, J.A., O'Reilly, V.C., Saga, Y., Zackai, E.H., Dormans, J.P., Alman, B.A., et al., 2012. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell. 149, 295-306.
|
Sparrow, D.B., Guillen-Navarro, E., Fatkin, D., Dunwoodie, S.L., 2008. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761-3766.
|
Stott, D., Kispert, A., and Herrmann, B.G., 1993. Rescue of the tail defect of Brachyury mice. Genes Dev. 7, 197-203.
|
Weiss, H.R., and Moramarco, M., 2016. Congenital Scoliosis (Mini-review). Curr. Pediatr. Rev. 12, 43-47.
|
Wu, N., Ming, X., Xiao, J., Wu, Z., Chen, X., Shinawi, M., Shen, Y., Yu, G., Liu, J., Xie, H., et al., 2015. TBX6 null variants and a common hypomorphic allele in congenital scoliosis. N. Engl. J. Med. 372, 341-350.
|
Wynnedavies, R., 1975. Congenital vertebral anomalies: aetiology and relationship to spina bifida cystica. J. Med. Genet. 12, 280-288.
|
Zhao, J.Y., Qiao, B., Duan, W.Y., Gong, X.H., Peng, Q.Q., Jiang, S.S., Lu, C.Q., Chen, Y.J., Shen, H.B., Huang, G.Y., et al., 2014. Genetic variants reducing MTR gene expression increase the risk of congenital heart disease in Han Chinese populations. Eur. Heart J. 35, 733-742.
|
Zhu, J.J., Kwan, K.M., Mackem, S., 2016. Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl. Acad. Sci. U. S. A. 113, 3820-3825.
|