5.9
CiteScore
5.9
Impact Factor
Turn off MathJax
Article Contents

Distinguished biological adaptation architecture aggravated population differentiation of Tibeto-Burman-speaking people inferred from 500 whole-genome data from 39 populations

doi: 10.1016/j.jgg.2023.10.002
Funds:

This work was supported by grants from the National Natural Science Foundation of China (82202078) and the Center for Archaeological Science of Sichuan University (23SASA01).

  • Received Date: 2023-08-25
  • Revised Date: 2023-09-28
  • Accepted Date: 2023-10-04
  • Available Online: 2023-10-11
  • Tibeto-Burman (TB) people have endeavored to adapt to the hypoxic, cold, and high-UV high-altitude environments in the Tibetan Plateau and complex disease exposures in lowland rainforests since the late Paleolithic period. However, the full landscape of genetic history and biological adaptation of geographically diverse TB-speaking people, as well as their interaction mechanism remain unknown. We generate a whole-genome meta-database of 500 individuals from 39 TB-speaking populations in East Asia and Southeast Asia and present a comprehensive landscape of genetic diversity, admixture history, and differentiated adaptative features of geographically different TB-speaking people. We identify genetic differentiation related to geography and language among TB-speaking people, consistent with their differentiated admixture process with incoming or indigenous ancestral source populations. A robust genetic connection between the Tibetan-Yi corridor and ancient Yellow River people supports their Northern China origin hypothesis. We finally report substructure-related differentiated biological adaptative signatures between highland Tibetans and Loloish speakers. Adaptative signatures associated with the physical pigmentation (EDAR and SLC24A5) and metabolism (ALDH9A1) are identified in Loloish people, which differed from the high-altitude adaptative genetic architecture in Tibetan. TB-related genomic resources provide new insights into the genetic basis of biological adaptation and better reference for the anthropologically-informed sampling design in biomedical and genomic cohort research.
  • loading
  • Alexander, D.H., Novembre, J.,Lange, K., 2009. Fast model-based estimation of ancestry in unrelated individuals.Genome Res. 19, 1655-1664.
    Almarri, M.A., Bergstrom, A., Prado-Martinez, J., Yang, F., Fu, B., Dunham, A.S., Chen, Y., Hurles, M.E., Tyler-Smith, C.,Xue, Y., 2020. Population structure, stratification, and introgression of human structural variation. Cell 182, 189-199 e115.
    Basang, Z., Zhang, S., Yang, L., Quzong, D., Li, Y., Ma, Y., Hao, M., Pu, W., Liu, X., Xie, H., et al., 2021. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia. J. Genet.Genomics 48, 928-935.
    Basu Mallick, C., Iliescu, F.M., Mols, M., Hill, S., Tamang, R., Chaubey, G., Goto, R., Ho, S.Y., Gallego Romero, I., Crivellaro, F., et al., 2013. The light skin allele of slc24a5 in South Asians and Europeans shares identity by descent. PLoS Genet. 9, e1003912.
    Beall, C.M., Cavalleri, G.L., Deng, L., Elston, R.C., Gao, Y., Knight, J., Li, C., Li, J.C., Liang, Y., McCormack, M., et al., 2010. Natural selection on epas1 (hif2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl. Acad. Sci. U S A 107, 11459-11464.
    Ben-Eghan, C., Sun, R., Hleap, J.S., Diaz-Papkovich, A., Munter, H.M., Grant, A.V., Dupras, C., Gravel, S., 2020. Don't ignore genetic data from minority populations. Nature 585, 184-186.
    Bergstrom, A., McCarthy, S.A., Hui, R., Almarri, M.A., Ayub, Q., Danecek, P., Chen, Y., Felkel, S., Hallast, P., Kamm, J., et al., 2020. Insights into human genetic variation and population history from 929 diverse genomes.Science 367.
    Bi, G., Luan, X.,Yan, J., 2023. Orpa:A fast and efficient phylogenetic analysis method for constructing genome-wide alignments of organelle genomes. J. Genet. Genomics.
    Browning, B.L., Browning, S.R., 2013. Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93, 840-851.
    Browning, S.R., Browning, B.L., 2015. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97, 404-418.
    Byrska-Bishop, M., Evani, U.S., Zhao, X., Basile, A.O., Abel, H.J., Regier, A.A., Corvelo, A., Clarke, W.E., Musunuri, R., Nagulapalli, K., et al., 2022. High-coverage whole-genome sequencing of the expanded 1000 genomes project cohort including 602 trios. Cell 185, 3426-3440 e3419.
    Cao, Y., Li, L., Xu, M., Feng, Z., Sun, X., Lu, J., Xu, Y., Du, P., Wang, T., Hu, R., et al., 2020. The chinamap analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 30, 717-731.
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., Lee, J.J., 2015. Second-generation plink:Rising to the challenge of larger and richer datasets. Gigascience 4, 7.
    Choin, J., Mendoza-Revilla, J., Arauna, L.R., Cuadros-Espinoza, S., Cassar, O., Larena, M., Ko, A.M., Harmant, C., Laurent, R., Verdu, P., et al., 2021. Genomic insights into population history and biological adaptation in Oceania. Nature 592, 583-589.
    Cong, P.K., Bai, W.Y., Li, J.C., Yang, M.Y., Khederzadeh, S., Gai, S.R., Li, N., Liu, Y.H., Yu, S.H., Zhao, W.W., et al., 2022. Genomic analyses of 10,376 individuals in the Westlake biobank for Chinese (WBBC) pilot project.Nat. Commun. 13, 2939.
    Delaneau, O., Marchini, J., Zagury, J.F., 2011. A linear complexity phasing method for thousands of genomes. Nat.Methods 9, 179-181.
    Deng, L., Zhang, C., Yuan, K., Gao, Y., Pan, Y., Ge, X., He, Y., Yuan, Y., Lu, Y., Zhang, X., et al., 2019. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl. Sci. Rev. 6, 1201-1222.
    Galanter, J.M., Gignoux, C.R., Oh, S.S., Torgerson, D., Pino-Yanes, M., Thakur, N., Eng, C., Hu, D., Huntsman, S., Farber, H.J., et al., 2017. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures. eLife 6.
    Gao, Y., Yang, X., Chen, H., Tan, X., Yang, Z., Deng, L., Wang, B., Kong, S., Li, S., Cui, Y., et al., 2023. A pangenome reference of 36 Chinese populations. Nature 619, 112-121.
    Gao, Y., Zhang, X., Chen, H., Lu, Y., Ma, S., Yang, Y., Zhang, M., Xu, S., 2022. Reconstructing the ancestral gene pool to uncover the origins and genetic links of Hmong-Mien speakers. Cell Genomics
    Guanglin, H., Hongbing, Y., Qiuxia, S., Shuhan, D., Renkuan, T., Jing, C., Zhiyong, W., Yuntao, S., Xiangping, L., Shaomei, W., et al., 2023. Whole-genome sequencing of ethnolinguistic diverse northwestern Chinese hexi corridor people from the 10k_cpgdp project suggested the differentiated east-west genetic admixture along the Silk Road and their biological adaptations. bioRxiv, 2023.2002.2026.530053.
    Hao, M., Pu, W., Li, Y., Wen, S., Sun, C., Ma, Y., Zheng, H., Chen, X., Tan, J., Zhang, G., et al., 2021. The HuaBiao project:Whole-exome sequencing of 5000 Han Chinese individuals. J. Genet. Genomics 48, 1032-1035.
    He, G., Chen, P., Zou, X., Chen, X., Song, F., Yan, J., Hou, Y., 2017. Genetic polymorphism investigation of the Chinese yi minority using powerplex(r) y23 str amplification system. Int. J. Legal. Med. 131, 663-666.
    He, G., Wang, M., Zou, X., Chen, P., Wang, Z., Liu, Y., Yao, H., Wei, L.H., Tang, R., Wang, C.C., et al., 2021. Peopling history of the Tibetan plateau and multiple waves of admixture of Tibetans inferred from both ancient and modern genome-wide data. Front. Genet. 12, 725243.
    He, G., Wang, Z., Wang, M., Luo, T., Liu, J., Zhou, Y., Gao, B., Hou, Y., 2018. Forensic ancestry analysis in two Chinese minority populations using massively parallel sequencing of 165 ancestry-informative SNPs. Electrophoresis 39, 2732-2742.
    Janhunen, J., 1996. Manchuria:An ethnic history. Finno-Ugrian Society, Helsinki.Jeong, C., 2017. A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau.PLoS ONE 12.
    Jeong, C., Alkorta-Aranburu, G., Basnyat, B., Neupane, M., Witonsky, D.B., Pritchard, J.K., Beall, C.M., Di Rienzo, A., 2014. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 3281.
    Jeong, C., Ozga, A.T., Witonsky, D.B., Malmstrom, H., Edlund, H., Hofman, C.A., Hagan, R.W., Jakobsson, M., Lewis, C.M., Aldenderfer, M.S., et al., 2016. Long-term genetic stability and a high-altitude east asian origin for the peoples of the high valleys of the Himalayan arc. Proc. Natl. Acad. Sci. U S A 113, 7485-7490.
    Jeong, C., Wang, K., Wilkin, S., Taylor, W.T.T., Miller, B.K., Bemmann, J.H., Stahl, R., Chiovelli, C., Knolle, F., Ulziibayar, S., et al., 2020. A dynamic 6,000-year genetic history of Eurasia's eastern steppe. Cell 183, 890-904 e829.
    Ji, H., Chen, J., Huang, P., Feng, Z., Hu, W., Dai, M., Sun, X., Jin, X., Chen, G., Ning, G., et al., 2023. Multi-omics analyses of g6pd deficiency variants in Chinese population. J. Genet. Genomics.
    Kamberov, Y.G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., et al., 2013.Modeling recent human evolution in mice by expression of a selected edar variant. Cell 152, 691-702.
    Kumar, S.e.a., 2016. Mega7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution.
    Kutanan, W., Kampuansai, J., Srikummool, M., Brunelli, A., Ghirotto, S., Arias, L., Macholdt, E., Hubner, A., Schroder, R.,Stoneking, M., 2019. Contrasting paternal and maternal genetic histories of Thai and Lao populations.Mol. Biol. Evol. 36, 1490-1506.
    Kutanan, W., Liu, D., Kampuansai, J., Srikummool, M., Srithawong, S., Shoocongdej, R., Sangkhano, S., Ruangchai, S., Pittayaporn, P., Arias, L., et al., 2021. Reconstructing the human genetic history of mainland southeast Asia:Insights from genome-wide data from Thailand and Laos. Mol. Biol. Evol. 38, 3459-3477.
    Lamason, R.L., Mohideen, M.A., Mest, J.R., Wong, A.C., Norton, H.L., Aros, M.C., Jurynec, M.J., Mao, X., Humphreville, V.R., Humbert, J.E., et al., 2005. Slc24a5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310, 1782-1786.
    Lawson, D.J., Hellenthal, G., Myers, S., Falush, D., 2012. Inference of population structure using dense haplotype data.PLoS Genet. 8, e1002453.
    Li, C., Tian, D., Tang, B., Liu, X., Teng, X., Zhao, W., Zhang, Z., Song, S., 2021. Genome variation map:A worldwide collection of genome variations across multiple species. Nucleic acids research 49, D1186-D1191.
    Li, P., 2010. Recognition of history and culture and identification of Yi people. Journal of Guizhou University for National Titles (Philosophy and Social Science).
    Li, Y.C., Tian, J.Y., Liu, F.W., Yang, B.Y., Gu, K.S., Rahman, Z.U., Yang, L.Q., Chen, F.H., Dong, G.H.,Kong, Q.P., 2019.Neolithic millet farmers contributed to the permanent settlement of the Tibetan plateau by adopting barley agriculture. Natl. Sci. Rev. 6, 1005-1013.
    Liao, W.W., Asri, M., Ebler, J., Doerr, D., Haukness, M., Hickey, G., Lu, S., Lucas, J.K., Monlong, J., Abel, H.J., et al., 2023. A draft human pangenome reference. Nature 617, 312-324.
    Lipson, M., Cheronet, O., Mallick, S., Rohland, N., Oxenham, M., Pietrusewsky, M., Pryce, T.O., Willis, A., Matsumura, H., Buckley, H., et al., 2018. Ancient genomes document multiple waves of migration in southeast asian prehistory. Science 361, 92-95.
    Liu, C.C., Witonsky, D., Gosling, A., Lee, J.H., Ringbauer, H., Hagan, R., Patel, N., Stahl, R., Novembre, J., Aldenderfer, M., et al., 2022a. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat. Commun. 13, 1203.
    Liu, D., Duong, N.T., Ton, N.D., Van Phong, N., Pakendorf, B., Van Hai, N.,Stoneking, M., 2020. Extensive ethnolinguistic diversity in Vietnam reflects multiple sources of genetic diversity. Mol. Biol. Evol. 37, 2503-2519.
    Liu, L., Chen, J., Wang, J., Zhao, Y.,Chen, X., 2022b. Archaeological evidence for initial migration of neolithic proto sino-tibetan speakers from Yellow River Valley to Tibetan plateau. Proc. Natl. Acad. Sci. U S A 119, e2212006119.
    Liu, Y., Wang, M., Chen, P., Wang, Z., Liu, J., Yao, L., Wang, F., Tang, R., Zou, X.,He, G., 2021a. Combined low-/high-density modern and ancient genome-wide data document genomic admixture history of high-altitude East Asians. Front. Genet. 12, 582357.
    Liu, Y., Wang, T., Wu, X., Fan, X., Wang, W., Xie, G., Li, Z., Yang, Q., Cao, P., Yang, R., et al., 2021b. Maternal genetic history of southern East Asians over the past 12,000 years. J. Genet. Genomics 48, 899-907
    Liu, Y., Xie, J., Wang, M., Liu, C., Zhu, J., Zou, X., Li, W., Wang, L., Leng, C., Xu, Q., et al., 2021b. Genomic insights into the population history and biological adaptation of southwestern Chinese Hmong-Mien people. Front.Genet. 12, 815160.
    Loh, P.R., Lipson, M., Patterson, N., Moorjani, P., Pickrell, J.K., Reich, D.,Berger, B., 2013. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233-1254.
    Lu, D., Lou, H., Yuan, K., Wang, X., Wang, Y., Zhang, C., Lu, Y., Yang, X., Deng, L., Zhou, Y., et al., 2016. Ancestral origins and genetic history of Tibetan highlanders. Am. J. Hum. Genet. 99, 580-594.
    Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale, M.,Chen, W.M., 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867-2873.
    Mao, X., Zhang, H., Qiao, S., Liu, Y., Chang, F., Xie, P., Zhang, M., Wang, T., Li, M., Cao, P., et al., 2021. The deep population history of northern east Asia from the late Pleistocene to the Holocene. Cell 184, 3256-3266e3213.
    Members, C.-N., 2022. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research 50, D27.
    Miao, B., Liu, Y., Gu, W., Wei, Q., Wu, Q., Wang, W., Zhang, M., Ding, M., Wang, T., Liu, J., et al., 2021. Maternal genetic structure of a neolithic population of the Yangshao culture. Journal of Genetics and Genomics 48, 746-750.
    Ning, C., Li, T., Wang, K., Zhang, F., Li, T., Wu, X., Gao, S., Zhang, Q., Zhang, H., Hudson, M.J., et al., 2020. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat.Commun. 11, 2700.
    Pagani, L., Lawson, D.J., Jagoda, E., Morseburg, A., Eriksson, A., Mitt, M., Clemente, F., Hudjashov, G., DeGiorgio, M., Saag, L., et al., 2016. Genomic analyses inform on migration events during the peopling of Eurasia.Nature 538, 238-242.
    Pan, Y., Zhang, C., Lu, Y., Ning, Z., Lu, D., Gao, Y., Zhao, X., Yang, Y., Guan, Y., Mamatyusupu, D., et al., 2022.Genomic diversity and post-admixture adaptation in the Uyghurs. Natl. Sci. Rev. 9, nwab124.
    Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T.,Reich, D., 2012.Ancient admixture in human history. Genetics 192, 1065-1093.
    Patterson, N., Price, A.L., Reich, D., 2006. Population structure and eigenanalysis. PLoS Genet. 2, e190.
    Peng, Y., Cui, C., He, Y., Ouzhuluobu, Zhang, H., Yang, D., Zhang, Q., Bianbazhuoma, Yang, L., He, Y., et al., 2017.Down-regulation of epas1 transcription and genetic adaptation of Tibetans to high-altitude hypoxia. Mol. Biol.Evol. 34, 818-830.
    Pickrell, J.K., Pritchard, J.K., 2012. Inference of population splits and mixtures from genome-wide allele frequency data.PLoS Genet. 8, e1002967.
    Reich, D., Thangaraj, K., Patterson, N., Price, A.L., Singh, L., 2009. Reconstructing Indian population history. Nature 461, 489-494.
    Blench, R., Sagart, L., & Sanchez-Mazas, A. (Eds.). (2005). The Peopling of East Asia:Putting Together Archaeology, Linguistics and Genetics (1st ed.). Routledge.
    Sagart, L., Jacques, G., Lai, Y., Ryder, R.J., Thouzeau, V., Greenhill, S.J., List, J.M., 2019. Dated language phylogenies shed light on the ancestry of sino-tibetan. Proc. Natl. Acad. Sci. U S A 116, 10317-10322.
    Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., Witherspoon, D.J., Bai, Z., Lorenzo, F.R., Xing, J., Jorde, L.B., et al., 2010. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72-75.
    Sirugo, G., Williams, S.M., Tishkoff, S.A., 2019. The missing diversity in human genetic studies. Cell 177, 26-31.
    Smith, J.D., Meehan, M.H., Crean, J., McCann, A., 2011. Alpha t-catenin (ctnna3):A gene in the hand is worth two in the nest. Cell Mol. Life. Sci. 68, 2493-2498.
    Szpiech, Z.A.,Hernandez, R.D., 2014. Selscan:An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824-2827.
    Tao, L., 2022. Ancient genomes reveal coexistence of demic and cultural diffusion in the development of neolithic mixed millet and rice farming in southwest China. Current Biology.
    van Driem, G., 2002. Tibeto-Burman replaces Indo-Chinese in the 1990s:Review of a decade of scholarship. Lingua 112, 79-102.
    Wang, B., Zhang, Y.B., Zhang, F., Lin, H., Wang, X., Wan, N., Ye, Z., Weng, H., Zhang, L., Li, X., et al., 2011. On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS One 6, e17002.
    Wang, C.C., Wang, L.X., Shrestha, R., Zhang, M., Huang, X.Y., Hu, K., Jin, L.,Li, H., 2014. Genetic structure of Qiangic populations residing in the western Sichuan corridor. PLoS One 9, e103772.
    Wang, C.C., Yeh, H.Y., Popov, A.N., Zhang, H.Q., Matsumura, H., Sirak, K., Cheronet, O., Kovalev, A., Rohland, N., Kim, A.M., et al., 2021a. Genomic insights into the formation of human populations in East Asia. Nature 591, 413-419.
    Wang, H., Yang, M.A., Wangdue, S., Lu, H., Chen, H., Li, L., Dong, G., Tsring, T., Yuan, H., He, W., et al., 2023. Human genetic history on the Tibetan plateau in the past 5100 years. Science Advances9, eadd5582.
    Wang, L.X., Lu, Y., Zhang, C., Wei, L.H., Yan, S., Huang, Y.Z., Wang, C.C., Mallick, S., Wen, S.Q., Jin, L., et al., 2018.Reconstruction of y-chromosome phylogeny reveals two neolithic expansions of tibeto-burman populations.Mol. Genet. Genomics 293, 1293-1300.
    Wang, M., Du, W., Tang, R., Liu, Y., Zou, X., Yuan, D., Wang, Z., Liu, J., Guo, J., Yang, X., et al., 2022. Genomic history and forensic characteristics of Sherpa highlanders on the Tibetan plateau inferred from high-resolution indel panel and genome-wide SNPs. Forensic Sci. Int. Genet. 56, 102633.
    Wang, T., Wang, W., Xie, G., Li, Z., Fan, X., Yang, Q., Wu, X., Cao, P., Liu, Y., Yang, R., et al., 2021b. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 184, 3829-3841 e3821.
    Wen, B., Xie, X., Gao, S., Li, H., Shi, H., Song, X., Qian, T., Xiao, C., Jin, J., Su, B., et al., 2004. Analyses of genetic structure of Tibet-Burman populations reveals sex-biased admixture in southern Tibet-Burmans. Am. J. Hum.Genet. 74, 856-865.
    World Medical Association, I., 2001. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ 2001.
    Wuren, T., Simonson, T.S., Qin, G., Xing, J., Huff, C.D., Witherspoon, D.J., Jorde, L.B., Ge, R.L., 2014. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations. PLoS One 9, e88252.
    Xu, S., Li, S., Yang, Y., Tan, J., Lou, H., Jin, W., Yang, L., Pan, X., Wang, J., Shen, Y., et al., 2011. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol. Biol. Evol. 28, 1003-1011.
    Yang, M.A., Fan, X., Sun, B., Chen, C., Lang, J., Ko, Y.C., Tsang, C.H., Chiu, H., Wang, T., Bao, Q., et al., 2020. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282-288.
    Yang, Z., Bai, C., Pu, Y., Kong, Q., Guo, Y., Ouzhuluobu, Gengdeng, Liu, X., Zhao, Q., Qiu, Z., et al., 2022a. Genetic adaptation of skin pigmentation in highland Tibetans. Proc. Natl. Acad. Sci. U S A 119, e2200421119.
    Yang, Z., Chen, H., Lu, Y., Gao, Y., Sun, H., Wang, J., Jin, L., Chu, J.,Xu, S., 2022b. Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC. Biol. 20, 166.
    Yao, H.B., Tang, S., Yao, X., Yeh, H.Y., Zhang, W., Xie, Z., Du, Q., Ma, L., Wei, S., Gong, X., et al., 2017. The genetic admixture in Tibetan-Yi corridor. Am. J. Phys. Anthropol. 164, 522-532.
    Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z.X., Pool, J.E., Xu, X., Jiang, H., Vinckenbosch, N., Korneliussen, T.S., et al., 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75-78.
    Yu, X., Li, H., 2021. Origin of ethnic groups, linguistic families, and civilizations in China viewed from the y chromosome.Molecular genetics and genomics:MGG 296, 783-797.
    Zhang, C., Lu, Y., Feng, Q., Wang, X., Lou, H., Liu, J., Ning, Z., Yuan, K., Wang, Y., Zhou, Y., et al., 2017. Differentiated demographic histories and local adaptations between sherpas and Tibetans. Genome Biol. 18, 115.
    Zhang, D., Shen, X., Cheng, T., Xia, H., Liu, W., Gao, X.,Chen, F., 2020. New advances in the study of prehistoric human activity on the Tibetan plateau. Chinese Science Bulletin 65, 475-482.
    Zhang, G., Cui, C., Wangdue, S., Lu, H., Chen, H., Xi, L., He, W., Yuan, H., Tsring, T., Chen, Z., et al., 2023a. Maternal genetic history of ancient Tibetans over the past 4,000 years. J. Genet. Genomics.
    Zhang, M., Yan, S., Pan, W., Jin, L., 2019. Phylogenetic evidence for sino-tibetan origin in northern China in the late Neolithic. Nature 569, 112-115.
    Zhang, P., Luo, H., Li, Y., Wang, Y., Wang, J., Zheng, Y., Niu, Y., Shi, Y., Zhou, H., Song, T., et al., 2021a. Nyuwa genome resource:A deep whole-genome sequencing-based variation profile and reference panel for the Chinese population. Cell Rep. 37, 110017.
    Zhang, X., Sun, A., Ge, J., 2021b. Origin and spread of the aldh2 glu504lys allele. Phenomics 1, 222-228.
    Zhang, Y., Lu, H.W.,Ruan, J., 2023b. Gaep:A comprehensive genome assembly evaluating pipeline. J. Genet.Genomics.
    Zhang, Z., Zhang, Y., Wang, Y., Zhao, Z., Yang, M., Zhang, L., Zhou, B., Xu, B., Zhang, H., Chen, T., et al., 2022. The Tibetan-Yi region is both a corridor and a barrier for human gene flow. Cell Rep. 39, 110720.
    Zhao, M., Kong, Q.P., Wang, H.W., Peng, M.S., Xie, X.D., Wang, W.Z., Jiayang, Duan, J.G., Cai, M.C., Zhao, S.N., et al., 2009. Mitochondrial genome evidence reveals successful late paleolithic settlement on the Tibetan plateau. Proc. Natl. Acad. Sci. U S A 106, 21230-21235.
    Zheng, W., He, Y., Guo, Y., Yue, T., Zhang, H., Li, J., Zhou, B., Zeng, X., Li, L., Wang, B., et al., 2023. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biol. 24, 73.
    Zhou, Z.W., Yu, Z.G., Huang, X.M., Liu, J.S., Guo, Y.X., Chen, L.L., Song, J.M., 2022. Genomesyn:A bioinformatics tool for visualizing genome synteny and structural variations. J. Genet. Genomics 49, 1174-1176.
    Zhu, K., Du, P., Li, J., Zhang, J., Hu, X., Meng, H., Chen, L., Zhou, B., Yang, X., Xiong, J., et al., 2022. Cultural and demic co-diffusion of Tubo Empire on Tibetan plateau. iScience 25.
    Zou, X., He, G., Wang, M., Huo, L., Chen, X., Liu, J., Wang, S., Ye, Z., Wang, F., Wang, Z., et al., 2020. Genetic diversity and phylogenetic structure of four Tibeto-Burman-speaking populations in Tibetan-Yi corridor revealed by insertion/deletion polymorphisms. Mol. Genet. Genomic. Med. 8, e1140.
    Zou, X., Wang, Z., He, G., Wang, M., Su, Y., Liu, J., Chen, P., Wang, S., Gao, B., Li, Z., et al., 2018. Population genetic diversity and phylogenetic characteristics for high-altitude adaptive Kham Tibetan revealed by DNATyper(tm) 19 amplification system. Front. Genet. 9, 630.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (216) PDF downloads (19) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return