Aneja, P., Sanyal, R., Ranjan, A., 2025. Leaf growth in third dimension: a perspective of leaf thickness from genetic regulation to ecophysiology. New Phytol. 245, 989-999.
|
Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina squence data. Bioinformatics 30, 2114-2120.
|
Chen, D., Zhou, X., Chen, K., Chen, P., Guo, J., Liu, C., Chen, Y., 2022. Fine-mapping and candidate gene analysis of a major locus controlling leaf thickness in rice (Oryza sativa L.). Mol. Breed. 42, 6.
|
Coneva, V., Chitwood, D.H., 2018. Genetic and developmental basis for increased leaf thickess in the Arabidopsis Cvi ecotype. Front. Plant Sci. 9, 322.
|
Coneva, V., Frank, M.H., Balaguer, M.A.D.L., Li, M., Sozzani, R., Chitwood, D.H., 2017. Genetic architecture and molecular networks underlying leaf thickness in desert-adapted tomato Solanum pennellii. Plant Physiol. 175, 376-391.
|
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., Depristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
|
Dobin, A., Gingeras, T.R., 2015. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinf. 51, 11-14.
|
Garnier, E., Salager, J., Laurent, G., Sonie, L., 1999. Relationships between photosynthesis, nitrogen and leaf structure in 14 grass species and their dependence on the basis of expression. New Phytol. 143, 119-129.
|
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812-818.
|
Hoshino, R., Yoshida, Y., Tsukaya, H., 2019. Multiple steps of leaf thickening during sun-leaf formation in Arabidopsis. Plant J. 100, 738-753.
|
Jinwen, L., Jingping, Y., Pinpin, F., Junlan, S., Dongsheng, L., Changshui, G., Wenyue, C., 2009. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Res. 114, 426-432.
|
Kanbe, T., Sasaki, H., Aoki, N., Yamagishi, T., Ebitani, T., Yano, M., Ohsugi, R., 2008. Identification of QTLs for improvement of plant type in rice (Oryza sativa L.) Using Koshihikari/Kasalath chromosome segment substitution lines and backcross progeny F2 population. Plant Prod. Sci. 11, 447-456.
|
Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., Mccombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., et al., 2013. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4.
|
Khush, G.S., 2013. Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed. 132, 433-436.
|
Laza, M.R., Kondo, M., Ideta, O., Barlaan, E., Imbe, T., 2006. Identification of quantitative trait loci for δ13C and productivity in irrigated lowland rice. Crop sci. 46, 763-773.
|
Lee, T., Guo, H., Wang, X., Kim, C., Paterson, A.H., 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC genomics 15, 1-6.
|
Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv.1303, 3997.
|
Li, P., Chang, T., Chang, S., Ouyang, X., Qu, M., Song, Q., Xiao, L., Xia, S., Deng, Q., Zhu, X.G., 2018. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. J Integr Plant Biol. 60, 1154-1180.
|
Liu, C., Zhou, X., Chen, D., Li, L., Li, J., Chen, Y., 2014. Natural variation of leaf thickness and its association to yield traits in indica rice. J. Integr. Agric. 13, 316-325.
|
Liu, W., Zheng, L., Qi, D., 2020. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol. Evol. 10, 8166-8175.
|
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25, 402-408.
|
Mathan, J., Singh, A., Jathar, V., Ranjan, A., 2021. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. J. Exp. Bot. 72, 7119-7135.
|
Mckenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
|
Peng, S., 2000. Single-leaf and canopy photosynthesis of rice, Studies in Plant Science, Elsevier, pp. 213–228.
|
Peng, S., Khush, G.S., Virk, P., Tang, Q., Zou, Y., 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 108, 32-38.
|
Qi, J., Qian, Q., Bu, Q., Li, S., Chen, Q., Sun, J., Liang, W., Zhou, Y., Chu, C., Li, X., et al., 2008. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147, 1947-1959.
|
Qian, Q., Guo, L., Smith, S.M., Li, J., 2016. Breeding high-yield superior quality hybrid super rice by rational design. Natl. Sci. Rev. 3, 283-294.
|
Smith, M.R., Rao, I.M., Merchant, A., 2018. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. 9, 420465.
|
Takenaka, M., Zehrmann, A., Verbitskiy, D., Kugelmann, M., Hartel, B., Brennicke, A., 2012. Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants. Proc. Natl. Acad. Sci. U. S. A. 109, 5104-5109.
|
Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., Pachter, L., 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46-53.
|
Walters, R.G., Horton, P., 1994. Acclimation of Arabidopsis thaliana to the light environment: changes in composition of the photosynthetic apparatus. Planta 195, 248-256.
|
Wang, J., Yang, W., Zhang, S., Hu, H., Yuan, Y., Dong, J., Chen, L., Ma, Y., Yang, T., Zhou, L., et al., 2023. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biol. 24, 19.
|
Wang, J., Zhang, X., Lin, Z., 2018. QTL mapping in a maize F2 population using Genotyping-by-Sequencing and a modified fine-mapping strategy. Plant Sci. 276, 171-180.
|
Wang, J., Zhang, Z., 2021. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genomics, Proteomics Bioinf. 19, 629-640.
|
Wang, Y., Wang, Y., Ren, Y., Duan, E., Zhu, X., Hao, Y., Zhu, J., Chen, R., Lei, J., Teng, X., et al., 2021. White panicle2 encoding thioredoxin z, regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. New Phytol. 229, 2693-2706.
|
Weston, E., Thorogood, K., Vinti, G., Lopez-Juez, E., 2000. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants. Planta 211, 807-815.
|
Wickham, H., Wickham, H., 2016. Data analysis. Springer.
|
Xiang, J., Zhang, G., Qian, Q., Xue, H., 2012. Semi-rolled leaf1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol. 159, 1488-1500.
|
Xiao, H., Xu, Y., Ni, C., Zhang, Q., Zhong, F., Huang, J., Liu, W., Peng, L., Zhu, Y., Hu, J., 2018. A rice dual-localized pentatricopeptide repeat protein is involved in organellar RNA editing together with OsMORFs. J. Exp. Bot. 69, 2923-2936.
|
Xie, J., Liao, H., Wang, X., Zhang, X., Ni, J., Li, Y., Tian, W., Sang, X., 2019. DLT/OsGRAS-32, regulating leaf width and thickness by controlling cell number in Oryza sativa. Mol. Breed. 39, 1-11.
|
Yu, J., Pressoir, G., Briggs, W.H., Vroh Bi, I., Yamasaki, M., Doebley, J.F., Mcmullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., et al., 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203-208.
|
Zhang, C., Dong, S., Xu, J., He, W., Yang, T., 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786-1788.
|
Zhang, M., Sun, H., Fei, Z., Zhan, F., Gong, X., Gao, S. 2014. Fastq_clean: an optimized pipeline to clean the Illumina sequencing data with quality control. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 44-48.
|
Zhao, S., Hu, J., Guo, L., Qian, Q., Xue, H., 2010. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res. 20, 935-947.
|
Zhao, X., Xu, J., Zhao, M., Lafitte, R., Zhu, L., Fu, B., Gao, Y., Li, Z., 2008. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci. 174, 618-625.
|
Zheng, Z., Hu, H., Gao, S., Zhou, H., Luo, W., Kage, U., Liu, C., Jia, J., 2022. Leaf thickness of barley: genetic dissection, candidate genes prediction and its relationship with yield-related traits. Theor. Appl. Genet. 135, 1843-1854.
|
Zhu, T., Xia, C., Yu, R., Zhou, X., Xu, X., Wang, L., Zong, Z., Yang, J., Liu, Y., Ming, L., et al., 2024. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat. Commun. 15, 6562.
|