Alaynick, W.A., Jessell, T.M.,Pfaff, S.L., 2011. SnapShot: spinal cord development. Cell 146, 178.-178.
|
Andersen, J., Thom, N., Shadrach, J.L., Chen, X., Onesto, M.M., Amin, N.D., Yoon, S.J., Li, L., Greenleaf, W.J., Muller, F., et al., 2023. Single-cell transcriptomic landscape of the developing human spinal cord. Nat. Neurosci. 26, 902-914.
|
Blum, J.A., Klemm, S., Shadrach, J.L., Guttenplan, K.A., Nakayama, L., Kathiria, A., Hoang, P.T., Gautier, O., Kaltschmidt, J.A., Greenleaf, W.J., et al., 2021. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat. Neurosci. 24, 572-583.
|
Bourikas, D., Pekarik, V., Baeriswyl, T., Grunditz, A., Sadhu, R., Nardo, M., Stoeckli, E.T., 2005. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat. Neurosci. 8, 297-304.
|
Butler, S.J., Dodd, J., 2003. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38, 389-401.
|
Cai, Q., Lin, L., Liu, X.,Chen, J. 2025. Zmap: an intelligent region-allocation method to map single-cell into spatial data. https://www.biorxiv.org/content/10.1101/2025.01.27.635178v1.
|
Catela, C., Correa, E., Wen, K., Aburas, J., Croci, L., Consalez, G.G.,Kratsios, P., 2019. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural. Dev. 14, 2.
|
Chen, Z., 2019. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin. Cell Dev. Biol. 85, 71-77.
|
Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., Westphal, H., Beachy, P.A., 1996. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383, 407-413.
|
Comer, J.D., Alvarez, S., Butler, S.J., Kaltschmidt, J.A., 2019. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev. 14, 9.
|
Corradi, A., Croci, L., Broccoli, V., Zecchini, S., Previtali, S., Wurst, W., Amadio, S., Maggi, R., Quattrini, A.,Consalez, G.G., 2003. Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. Development 130, 401-410.
|
Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., Sagner, A., 2019. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 146, dev.173807.
|
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
|
Gong, C., Zheng, X., Guo, F., Wang, Y., Zhang, S., Chen, J., Sun, X., Shah, S.Z.A., Zheng, Y., Li, X., et al., 2021. Human spinal GABA neurons alleviate spasticity and improve locomotion in rats with spinal cord injury. Cell Rep. 34, 108889.
|
Gross, M.K., Dottori, M., Goulding, M., 2002. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535-549.
|
Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.
|
Kobak, D.,Berens, P., 2019. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416.
|
Lai, H.C., Seal, R.P., Johnson, J.E., 2016. Making sense out of spinal cord somatosensory development. Development 143, 3434-3448.
|
Laumonnerie, C., Tong, Y.G., Alstermark, H., Wilson, S.I., 2015. Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nat. Commun. 6, 7028.
|
Li, X., Andrusivova, Z., Czarnewski, P., Langseth, C.M., Andersson, A., Liu, Y., Gyllborg, D., Braun, E., Larsson, L., Hu, L., et al., 2023. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26, 891-901.
|
Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y., 2019. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16, 243-245.
|
Long, Y., Ang, K.S., Li, M., Chong, K.L.K., Sethi, R., Zhong, C., Xu, H., Ong, Z., Sachaphibulkij, K., Chen, A., et al., 2023. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155.
|
Maden, M., 2006. Retinoids and spinal cord development. J. Neurobiol. 66, 726-738.
|
Maximino, J.R., de Oliveira, G.P., Alves, C.J., Chadi, G., 2014. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) amyotrophic lateral sclerosis mouse model. Front. Cell. Neurosci. 8, 148.
|
Mizuguchi, R., Kriks, S., Cordes, R., Gossler, A., Ma, Q., Goulding, M., 2006. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat. Neurosci. 9, 770-778.
|
Nowotschin, S., Setty, M., Kuo, Y.-Y., Liu, V., Garg, V., Sharma, R., Simon, C.S., Saiz, N., Gardner, R., Boutet, S.C., et al., 2019. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361-367.
|
Nunnelly, L.F., Campbell, M., Lee, D.I., Dummer, P., Gu, G., Menon, V., Au, E., 2022. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat. Commun. 13, 7735.
|
Pacary, E., Martynoga, B., Guillemot, F., 2012. Crucial first steps: the transcriptional control of neuron delamination. Neuron 74, 209-211.
|
Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra, I.L., Holmberg, O., Virshup, I., et al., 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171-178.
|
Price, S.R., 2012. Cell adhesion and migration in the organization of spinal motor neurons. Cell. Adh. Migr. 6, 385-389.
|
Rayon, T., Maizels, R.J., Barrington, C., Briscoe, J., 2021. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development 148, dev.199711.
|
Rexed, B., 1952. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96, 414-495.
|
Roome, R.B., Levine, A.J., 2023. The organization of spinal neurons: Insights from single cell sequencing. Curr. Opin. Neurobiol. 82, 102762.
|
Rosenbaum, J.N., Duggan, A.,Garcia-Anoveros, J., 2011. Insm1promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic. Neural Dev. 6, 6.
|
Russ, D.E., Cross, R.B.P., Li, L., Koch, S.C., Matson, K.J.E., Yadav, A., Alkaslasi, M.R., Lee, D.I., Le Pichon, C.E., Menon, V., et al., 2021. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 12, 5722.
|
Sagner, A., Briscoe, J., 2019. Establishing neuronal diversity in the spinal cord: a time and a place. Development 146, dev.182154.
|
Shi, Y., Huang, L., Dong, H., Yang, M., Ding, W., Zhou, X., Lu, T., Liu, Z., Zhou, X., Wang, M., et al., 2024. Decoding the spatiotemporal regulation of transcription factors during human spinal cord development. Cell Res. 34, 193-213.
|
Surmeli, G., Akay, T., Ippolito, Gregory C., Tucker, Philip W., Jessell, Thomas M., 2011. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147, 653-665.
|
Systems, R.D. 2004. Axon guidance cues at the spinal cord midline. https://www.rndsystems.com/cn/resources/articles/axon-guidance-cues-spinal-cord-midline
|
Traag, V.A., Waltman, L.,Van Eck, N.J., 2019. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233.
|
Tsuji, O., Miura, K., Fujiyoshi, K., Momoshima, S., Nakamura, M., Okano, H., 2011. Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8, 668-676.
|
Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., et al., 2010. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. 107, 12704-12709.
|
Wolf, F.A., Angerer, P., Theis, F.J., 2018. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
|
Wolock, S.L., Lopez, R., Klein, A.M., 2019. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281.-29.
|
Yamada, T., Placzek, M., Tanaka, H., Dodd, J., Jessell, T.M., 1991. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635-647.
|
Zhang, Q., Wu, X., Fan, Y., Jiang, P., Zhao, Y., Yang, Y., Han, S., Xu, B., Chen, B., Han, J., et al., 2021. Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord. EMBO Rep. 22, e52728.
|
Zholudeva, L.V., Lane, M.A., 2023. Spinal interneurons plasticity after spinal cord. Elsevier, San Diego.
|
Zink, C.F., Barker, P.B., Sawa, A., Weinberger, D.R., Wang, M., Quillian, H., Ulrich, W.S., Chen, Q., Jaffe, A.E., Kleinman, J.E., et al., 2020. Association of missense mutation in FOLH1 with decreased NAAG levels and impaired working memory circuitry and cognition. AJP 177, 1129-1139.
|