9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Spatiotemporal dynamics of neuron differentiation and migration in the developing human spinal cord

doi: 10.1016/j.jgg.2025.08.004
Funds:

D Program of China (2024YFA1802300 and 2023YFF1204701), the National Natural Science Foundation of China (32225012 and 32200662), Major Project of Guangzhou National Laboratory (GZNL2023A02005), Pearl River Talent Recruitment Program (2021ZT09Y233), Science and Technology Planning Project of Guangdong Province, China (2023B1212060050 and 2023B1212120009), and Health@InnoHK Program launched by Innovation Technology Commission of the Hong Kong SAR, P. R. China.

This work was financially supported by the National Key R&

  • Received Date: 2025-04-03
  • Accepted Date: 2025-08-10
  • Rev Recd Date: 2025-08-10
  • Available Online: 2025-08-19
  • Precise formation of complex neural circuits in the spinal cord, achieved through the integration of diverse neuronal populations, is essential for central nervous system function. However, the specialization and migration of human spinal cord neurons remain poorly understood. In this study, we perform single-cell transcriptome sequencing of human spinal cord from Carnegie Stage (CS) 16-21 and mouse spinal cord from embryonic day (E) 8.0-11.5, complemented by in situ sequencing of human spinal cord (CS 16-20). Our results reveal the critical role of the precursor state in neuronal differentiation and migration, identifying key transcription factors that regulate these processes across species. Notably, each neuronal lineage expresses unique markers as early as the progenitor stage at the spinal cord midline, and subsequently undergoes a shared transcriptional program during precursor commitment that guides migration. This synchronized migration, validated by spatial transcriptomics, occurs in both dorsal and ventral regions. Our findings offer important insights into the migration patterns and regulatory factors that guide spinal cord neuron subtype specification during embryogenesis.
  • loading
  • Alaynick, W.A., Jessell, T.M.,Pfaff, S.L., 2011. SnapShot: spinal cord development. Cell 146, 178.-178.
    Andersen, J., Thom, N., Shadrach, J.L., Chen, X., Onesto, M.M., Amin, N.D., Yoon, S.J., Li, L., Greenleaf, W.J., Muller, F., et al., 2023. Single-cell transcriptomic landscape of the developing human spinal cord. Nat. Neurosci. 26, 902-914.
    Blum, J.A., Klemm, S., Shadrach, J.L., Guttenplan, K.A., Nakayama, L., Kathiria, A., Hoang, P.T., Gautier, O., Kaltschmidt, J.A., Greenleaf, W.J., et al., 2021. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat. Neurosci. 24, 572-583.
    Bourikas, D., Pekarik, V., Baeriswyl, T., Grunditz, A., Sadhu, R., Nardo, M., Stoeckli, E.T., 2005. Sonic hedgehog guides commissural axons along the longitudinal axis of the spinal cord. Nat. Neurosci. 8, 297-304.
    Butler, S.J., Dodd, J., 2003. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38, 389-401.
    Cai, Q., Lin, L., Liu, X.,Chen, J. 2025. Zmap: an intelligent region-allocation method to map single-cell into spatial data. https://www.biorxiv.org/content/10.1101/2025.01.27.635178v1.
    Catela, C., Correa, E., Wen, K., Aburas, J., Croci, L., Consalez, G.G.,Kratsios, P., 2019. An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development. Neural. Dev. 14, 2.
    Chen, Z., 2019. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin. Cell Dev. Biol. 85, 71-77.
    Chiang, C., Litingtung, Y., Lee, E., Young, K.E., Corden, J.L., Westphal, H., Beachy, P.A., 1996. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383, 407-413.
    Comer, J.D., Alvarez, S., Butler, S.J., Kaltschmidt, J.A., 2019. Commissural axon guidance in the developing spinal cord: from Cajal to the present day. Neural Dev. 14, 9.
    Corradi, A., Croci, L., Broccoli, V., Zecchini, S., Previtali, S., Wurst, W., Amadio, S., Maggi, R., Quattrini, A.,Consalez, G.G., 2003. Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice. Development 130, 401-410.
    Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., Sagner, A., 2019. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 146, dev.173807.
    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
    Gong, C., Zheng, X., Guo, F., Wang, Y., Zhang, S., Chen, J., Sun, X., Shah, S.Z.A., Zheng, Y., Li, X., et al., 2021. Human spinal GABA neurons alleviate spasticity and improve locomotion in rats with spinal cord injury. Cell Rep. 34, 108889.
    Gross, M.K., Dottori, M., Goulding, M., 2002. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34, 535-549.
    Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29.
    Kobak, D.,Berens, P., 2019. The art of using t-SNE for single-cell transcriptomics. Nat. Commun. 10, 5416.
    Lai, H.C., Seal, R.P., Johnson, J.E., 2016. Making sense out of spinal cord somatosensory development. Development 143, 3434-3448.
    Laumonnerie, C., Tong, Y.G., Alstermark, H., Wilson, S.I., 2015. Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nat. Commun. 6, 7028.
    Li, X., Andrusivova, Z., Czarnewski, P., Langseth, C.M., Andersson, A., Liu, Y., Gyllborg, D., Braun, E., Larsson, L., Hu, L., et al., 2023. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin. Nat. Neurosci. 26, 891-901.
    Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y., 2019. Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 16, 243-245.
    Long, Y., Ang, K.S., Li, M., Chong, K.L.K., Sethi, R., Zhong, C., Xu, H., Ong, Z., Sachaphibulkij, K., Chen, A., et al., 2023. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 14, 1155.
    Maden, M., 2006. Retinoids and spinal cord development. J. Neurobiol. 66, 726-738.
    Maximino, J.R., de Oliveira, G.P., Alves, C.J., Chadi, G., 2014. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) amyotrophic lateral sclerosis mouse model. Front. Cell. Neurosci. 8, 148.
    Mizuguchi, R., Kriks, S., Cordes, R., Gossler, A., Ma, Q., Goulding, M., 2006. Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat. Neurosci. 9, 770-778.
    Nowotschin, S., Setty, M., Kuo, Y.-Y., Liu, V., Garg, V., Sharma, R., Simon, C.S., Saiz, N., Gardner, R., Boutet, S.C., et al., 2019. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569, 361-367.
    Nunnelly, L.F., Campbell, M., Lee, D.I., Dummer, P., Gu, G., Menon, V., Au, E., 2022. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat. Commun. 13, 7735.
    Pacary, E., Martynoga, B., Guillemot, F., 2012. Crucial first steps: the transcriptional control of neuron delamination. Neuron 74, 209-211.
    Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra, I.L., Holmberg, O., Virshup, I., et al., 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171-178.
    Price, S.R., 2012. Cell adhesion and migration in the organization of spinal motor neurons. Cell. Adh. Migr. 6, 385-389.
    Rayon, T., Maizels, R.J., Barrington, C., Briscoe, J., 2021. Single-cell transcriptome profiling of the human developing spinal cord reveals a conserved genetic programme with human-specific features. Development 148, dev.199711.
    Rexed, B., 1952. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96, 414-495.
    Roome, R.B., Levine, A.J., 2023. The organization of spinal neurons: Insights from single cell sequencing. Curr. Opin. Neurobiol. 82, 102762.
    Rosenbaum, J.N., Duggan, A.,Garcia-Anoveros, J., 2011. Insm1promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic. Neural Dev. 6, 6.
    Russ, D.E., Cross, R.B.P., Li, L., Koch, S.C., Matson, K.J.E., Yadav, A., Alkaslasi, M.R., Lee, D.I., Le Pichon, C.E., Menon, V., et al., 2021. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 12, 5722.
    Sagner, A., Briscoe, J., 2019. Establishing neuronal diversity in the spinal cord: a time and a place. Development 146, dev.182154.
    Shi, Y., Huang, L., Dong, H., Yang, M., Ding, W., Zhou, X., Lu, T., Liu, Z., Zhou, X., Wang, M., et al., 2024. Decoding the spatiotemporal regulation of transcription factors during human spinal cord development. Cell Res. 34, 193-213.
    Surmeli, G., Akay, T., Ippolito, Gregory C., Tucker, Philip W., Jessell, Thomas M., 2011. Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147, 653-665.
    Systems, R.D. 2004. Axon guidance cues at the spinal cord midline. https://www.rndsystems.com/cn/resources/articles/axon-guidance-cues-spinal-cord-midline
    Traag, V.A., Waltman, L.,Van Eck, N.J., 2019. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233.
    Tsuji, O., Miura, K., Fujiyoshi, K., Momoshima, S., Nakamura, M., Okano, H., 2011. Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics 8, 668-676.
    Tsuji, O., Miura, K., Okada, Y., Fujiyoshi, K., Mukaino, M., Nagoshi, N., Kitamura, K., Kumagai, G., Nishino, M., Tomisato, S., et al., 2010. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. 107, 12704-12709.
    Wolf, F.A., Angerer, P., Theis, F.J., 2018. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
    Wolock, S.L., Lopez, R., Klein, A.M., 2019. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281.-29.
    Yamada, T., Placzek, M., Tanaka, H., Dodd, J., Jessell, T.M., 1991. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635-647.
    Zhang, Q., Wu, X., Fan, Y., Jiang, P., Zhao, Y., Yang, Y., Han, S., Xu, B., Chen, B., Han, J., et al., 2021. Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord. EMBO Rep. 22, e52728.
    Zholudeva, L.V., Lane, M.A., 2023. Spinal interneurons plasticity after spinal cord. Elsevier, San Diego.
    Zink, C.F., Barker, P.B., Sawa, A., Weinberger, D.R., Wang, M., Quillian, H., Ulrich, W.S., Chen, Q., Jaffe, A.E., Kleinman, J.E., et al., 2020. Association of missense mutation in FOLH1 with decreased NAAG levels and impaired working memory circuitry and cognition. AJP 177, 1129-1139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (22) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return