Akabane, S., K. Watanabe, H. Kosako, S. I. Yamashita, K. Nishino, M. Kato, S. Sekine, T. Kanki, N. Matsuda, et al., 2023. TIM23 facilitates PINK1 activation by safeguarding against OMA1-mediated degradation in damaged mitochondria. Cell Rep. 42, 112454.
|
Benedetti, C., C. M. Haynes, Y. Yang, H. P. Harding and D. Ron, 2006. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics. 174, 229-239.
|
Bhattacharya, S., J. Yin, W. Huo and E. Chaum, 2022. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Stem Cell Res. Ther. 13, 260.
|
Borner, G. V., M. Zeviani, V. Tiranti, F. Carrara, S. Hoffmann, K. D. Gerbitz, H. Lochmuller, D. Pongratz, T. Klopstock, et al., 2000. Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum. Mol. Genet. 9, 467-475.
|
Bowen, J., T. Richards and K. Maravilla, 1998. MR imaging and proton MR spectroscopy in A-to-G substitution at nucleotide position 3243 of leucine transfer RNA. AJNR Am. J. Neuroradiol. 19, 231-234.
|
Butterfield, D. A. and B. Halliwell, 2019. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148-160.
|
Chan, D. C., 2020. Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol.: Pathol. Mech. Dis. 15, 235-259.
|
Cheng, W., Y. Zhang and L. He, 2022. MRI features of stroke-like episodes in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. Front. Neurol. 13, 843386.
|
Eldeeb, M. A., R. A. Thomas, M. A. Ragheb, A. Fallahi and E. A. Fon, 2022. Mitochondrial quality control in health and in Parkinson's disease. Physiol. Rev. 102, 1721-1755.
|
Elliott, H. R., D. C. Samuels, J. A. Eden, C. L. Relton and P. F. Chinnery, 2008. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 83, 254-260.
|
Gao, X., Z. Jiang, X. Yan, J. Liu, F. Li, P. Liu, J. Li, Y. Wei, Y. E. Sun, et al., 2021. ATF5, a putative therapeutic target for the mitochondrial DNA 3243A>G mutation-related disease. Cell Death Dis. 12, 701.
|
Glenn, C. F., D. K. Chow, L. David, C. A. Cooke, M. S. Gami, W. B. Iser, K. B. Hanselman, I. G. Goldberg and C. A. Wolkow, 2004. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J. Gerontol. A Biol. Sci. Med. Sci. 59, 1251-1260.
|
Gorman, G. S., A. M. Schaefer, Y. Ng, N. Gomez, E. L. Blakely, C. L. Alston, C. Feeney, R. Horvath, P. Yu-Wai-Man, et al., 2015. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753-759.
|
Hornig-Do, H. T., A. Montanari, A. Rozanska, H. A. Tuppen, A. A. Almalki, D. P. Abg-Kamaludin, L. Frontali, S. Francisci, R. N. Lightowlers, et al., 2014. Human mitochondrial leucyl tRNA synthetase can suppress non cognate pathogenic mt-tRNA mutations. EMBO Mol. Med. 6, 183-193.
|
Klein Gunnewiek, T. M., E. J. H. Van Hugte, M. Frega, G. S. Guardia, K. Foreman, D. Panneman, B. Mossink, K. Linda, J. M. Keller, et al., 2020. m.3243A>G-induced mitochondrial dysfunction impairs human neuronal development and reduces neuronal network activity and synchronicity. Cell Rep. 31, 107538.
|
Lee, S. S., R. Y. Lee, A. G. Fraser, R. S. Kamath, J. Ahringer and G. Ruvkun, 2003. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat. Genet. 33, 40-48.
|
Li, R. and M. X. Guan, 2010. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNALeu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol. Cell. Biol. 30, 2147-2154.
|
Madreiter-Sokolowski, C. T., A. A. Sokolowski, M. Waldeck-Weiermair, R. Malli and W. F. Graier, 2018. Targeting mitochondria to counteract age-related cellular dysfunction. Genes (Basel). 9.
|
Matsubara, M., H. Kanda, H. Imamura, M. Inoue, M. Noguchi, K. Hosoda, A. Kakizuka and K. Nakao, 2018. Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation. Sci. Rep. 8, 949.
|
Murphy, R., D. M. Turnbull, M. Walker and A. T. Hattersley, 2008. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation. Diabet. Med. 25, 383-399.
|
Park, H., E. Davidson and M. P. King, 2003. The pathogenic A3243G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry. 42, 958-964.
|
Picard, M., J. Zhang, S. Hancock, O. Derbeneva, R. Golhar, P. Golik, S. O'Hearn, S. Levy, P. Potluri, et al., 2014. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl. Acad. Sci. U.S.A. 111, E4033-4042.
|
Shirakabe, A., P. Zhai, Y. Ikeda, T. Saito, Y. Maejima, C. P. Hsu, M. Nomura, K. Egashira, B. Levine, et al., 2016. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation. 133, 1249-1263.
|
Su, L., J. Zhang, H. Gomez, J. A. Kellum and Z. Peng, 2023. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy. 19, 401-414.
|
Suzuki, S., Y. Hinokio, M. Ohtomo, M. Hirai, A. Hirai, M. Chiba, S. Kasuga, Y. Satoh, H. Akai, et al., 1998. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation. Diabetologia. 41, 584-588.
|
Toth, M. L., I. Melentijevic, L. Shah, A. Bhatia, K. Lu, A. Talwar, H. Naji, C. Ibanez-Ventoso, P. Ghose, et al., 2012. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system. J. Neurosci. 32, 8778-8790.
|
Twig, G. and O. S. Shirihai, 2011. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signaling. 14, 1939-1951.
|
Wang, B., J. Nie, L. Wu, Y. Hu, Z. Wen, L. Dong, M. H. Zou, C. Chen and D. W. Wang, 2018. AMPKα2 protects against the development of heart failure by enhancing mitophagy via PINK1 phosphorylation. Circ. Res. 122, 712-729.
|
Xiao, L., X. Xu, F. Zhang, M. Wang, Y. Xu, D. Tang, J. Wang, Y. Qin, Y. Liu, et al., 2017. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 11, 297-311.
|
Yang, J., H. Suo and J. Song, 2021. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit. Rev. Food Sci. Nutr. 61, 3857-3875.
|
Yokota, M., H. Hatakeyama, S. Okabe, Y. Ono and Y. Goto, 2015. Mitochondrial respiratory dysfunction caused by a heteroplasmic mitochondrial DNA mutation blocks cellular reprogramming. Hum. Mol. Genet. 24, 4698-4709.
|
Zhao, T., D. Luo, Y. Sun, X. Niu, Y. Wang, C. Wang and W. Jia, 2018. Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice. J. Mol. Histol. 49, 419-428.
|