Patients affected by monogenic diseases impose a substantial burden on both themselves and their families. The primary preventive measure, i.e., invasive prenatal diagnosis, carries a risk of miscarriage and cannot be performed early in pregnancy. Hence, there is a need for non-invasive prenatal testing (NIPT) for monogenic diseases. By utilizing enriched cell-free fetal DNA (cffDNA) from maternal plasma, we refine the NIPT method, which combines targeted region capture technology, haplotyping, and analysis of informative site frequency. We apply this method to 93 clinical families at genetic risk for thalassemia, encompassing various genetic variant types, to establish a workflow and evaluate its efficiency. Our approach requires only 3 ng of DNA input to generate 0.1 GB of informative target genomic data and leverages a minimum of 3% cffDNA. This method has a 98.16% success rate and 100% concordance with conventional invasive methods. Furthermore, we demonstrate the ability to analyze fetal genotypes as early as eight weeks of gestation. This study establishes an optimized NIPT method for the early detection of various thalassemia disorders during pregnancy. This technique demonstrates high accuracy and potential for clinical application in prenatal diagnosis.
Collaborators., G.D., 2020. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1160-120.
|
Bedei, I., Wolter, A., Weber, A., Signore, F., Axt-Fliedner, R., 2021. Chances and challenges of New Genetic Screening Technologies (NIPT) in prenatal medicine from a clinical perspective: a narrative review. Genes 12, 501-514.
|
Che, H., Villela, D., Dimitriadou, E., Melotte, C., Brison, N., Neofytou, M., Van Den Bogaert, K., Tsuiko, O., Devriendt, K., Legius, E., et al., 2020. Noninvasive prenatal diagnosis by genome-wide haplotyping of cell-free plasma DNA. Genet. Med. 22, 962-973.
|
Chen, C., Li, R., Sun, J., Zhu, Y., Jiang, L., Li, J., Fu, F., Wan, J., Guo, F., An, X., et al., 2021. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome. Med. 13, 18-27.
|
D'Aversa, E., Breveglieri, G., Boutou, E., Balassopoulou, A., Voskaridou, E., Pellegatti, P., Guerra, G., Scapoli, C., Gambari, R., Borgatti, M., 2022. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma. Int. J. Mol. Sci. 23, 2819-2834.
|
Du, R.Q., Zhao, D.D., Kang, K., Wang, F., Xu, R.X., Chi, C.L., Kong, L.Y., Liang, B., 2022. A review of pre-implantation genetic testing technologies and applications. Reprod. Dev. Med. 7, 20-31.
|
Erlich, H.A., Lopez-Pena, C., Carlberg, K.T., Shih, S., Bali, G., Yamaguchi, K.D., Salamon, H., Das, R., Lal, A., Calloway, C.D., 2022. Noninvasive prenatal test for β-Thalassemia and sickle cell disease using probe capture enrichment and next-generation sequencing of DNA in maternal plasma. J. Appl. Lab. Med. 7, 515-531.
|
Fesahat, F., Montazeri, F., Hoseini, S.M., 2020. Preimplantation genetic testing in assisted reproduction. J. Gynecol. Obstet. Hum. Reprod. 49, 101723.
|
Hui, W.W., Jiang, P., Tong, Y.K., Lee, W.S., Cheng, Y.K., New, M.I., Kadir, R.A., Chan, K.C., Leung, T.Y., Lo, Y.M., et al., 2017. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin. Chem. 63, 513-524.
|
Jiang, F., Liu, W., Zhang, L., Guo, Y., Chen, M., Zeng, X., Wang, Y., Li, Y., Xian, J., Du, B., et al., 2021. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci. Rep. 11, 5714-5723.
|
Johnson, V.E., Pramanik, S., Shudde, R., 2023. Bayes factor functions for reporting outcomes of hypothesis tests. Proc. Natl. Acad. Sci. U S A. 120, e2217331120.
|
Kong, L., Li, S., Zhao, Z., Feng, J., Chen, G., Liu, L., Tang, W., Li, S., Li, F., Han, X., et al., 2021. Haplotype-based noninvasive prenatal diagnosis of 21 families with Duchenne Muscular Dystrophy: real-world clinical data in China. Front. Genet. 12, 791856.
|
Li, S., Chen, J., Abdulaziz, A.T.A., Liu, Y., Wang, X., Lin, M., Qin, Y., Liu, X., Zhou, D., 2019. Epilepsy in China: Factors influencing marriage status and fertility. Seizure. 71, 179-184.
|
Liang, B., Li, H., He, Q., Li, H., Kong, L., Xuan, L., Xia, Y., Shen, J., Mao, Y., Li, Y., et al., 2018. Enrichment of the fetal fraction in non-invasive prenatal screening reduces maternal background interference. Sci. Rep. 8, 17675.
|
Lo, Y.M., Chan, K.C., Sun, H., Chen, E.Z., Jiang, P., Lun, F.M., Zheng, Y.W., Leung, T.Y., Lau, T.K., Cantor, C.R., et al., 2010. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2, 61ra91.
|
Lun, F.M., Tsui, N.B., Chan, K.C., Leung, T.Y., Lau, T.K., Charoenkwan, P., Chow, K.C., Lo, W.Y., Wanapirak, C., Sanguansermsri, T., et al., 2008. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc. Natl. Acad. Sci. U S A. 105, 19920-19925.
|
Peng, D., Ganye, Z., Gege, S., Yanjie, X., Ning, L., Xiangdong, K., 2021. Clinical application of non-invasive prenatal diagnosis of phenylketonuria based on haplotypes via paired-end molecular tags and weighting algorithm. BMC. Med. 14, 294-304.
|
Pos, O., Budis, J., Szemes, T., 2019. Recent trends in prenatal genetic screening and testing. F1000Research. 8, 764.
|
Rabinowitz, T., Shomron, N., 2020. Genome-wide noninvasive prenatal diagnosis of monogenic disorders: Current and future trends. Comput. Struct. Biotechnol. J. 18, 2463-2470.
|
Shi, J., Zhang, R., Li, J., Zhang, R., 2019. Novel perspectives in fetal biomarker implementation for the noninvasive prenatal testing. Crit. Rev. Clin. Lab. Sci. 56, 374-392.
|
Thorvaldsdottir, H., Robinson, J.T., Mesirov, J.P., 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192.
|
Viprakasit, V., Ekwattanakit, S., 2018. Clinical classification, screening and diagnosis for thalassemia. Hematol. Oncol. Clin. N. 32, 193-211.
|
Wagenmakers, E.J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Selker, R., Gronau, Q.F., Dropmann, D., Boutin, B., et al., 2018. Bayesian inference for psychology. Part II: Example applications with JASP. Psychon. Bull. Rev. 25, 58-76.
|
Xu, C., Li, J., Chen, S., Cai, X., Jing, R., Qin, X., Pan, D., Zhao, X., Ma, D., Xu, X., et al., 2022. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening. Cell. Discov. 8, 109-131.
|
Yang, J., Peng, C.F., Qi, Y., Rao, X.Q., Guo, F., Hou, Y., He, W., Wu, J., Chen, Y.Y., Zhao, X., et al., 2020. Noninvasive prenatal detection of hemoglobin Bart hydrops fetalis via maternal plasma dispensed with parental haplotyping using the semiconductor sequencing platform. Am. J. Obstet. Gynecol. 222, 185.e181-185.e117.
|
Zhang, J., Wu, Y., Chen, S., Luo, Q., Xi, H., Li, J., Qin, X., Peng, Y., Ma, N., Yang, B., et al., 2024. Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies. Nat. Med. 30, 470-479.
|
Zhao, G., Wang, X., Liu, L., Dai, P., Kong, X., 2021. Noninvasive prenatal diagnosis of duchenne muscular dystrophy in five Chinese families based on relative mutation dosage approach. BMC. Med. Genomics. 14, 275-284.
|