9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

hfCas12Max-mediated targeted integration at accessible chromatin regions with a goat-derived UCOE enhances stable recombinant lactoferrin expression

doi: 10.1016/j.jgg.2025.11.008
Funds:

This work was supported by the Major Project on Agricultural Biological Breeding (2022ZD04014), the Shanxi Provincial Livestock and Poultry Breeding Industry "Two Chains" Integration Key Special Project "Cow Molecular Breeding and Rapid Breeding Key Technology" (2022GD-TSLD-46-0101), the Inner Mongolia Autonomous Region Unveils Marshalled Projects (2022JBGS0021), and the National Dairy Industry Technology Innovation Center Project Topics (2022-KYGG-3).

  • Received Date: 2025-06-18
  • Accepted Date: 2025-11-11
  • Rev Recd Date: 2025-11-11
  • Available Online: 2025-11-18
  • Stable transgene expression in the mammary gland is crucial for recombinant protein production in livestock, yet it is frequently hampered by transgene silencing and random integration. To address this, we profile chromatin accessibility in goat mammary epithelial cells (GMECs) using ATAC-seq and identify 15 highly accessible genomic regions. Three of these regions are confirmed to support stable transgene expression. Notably, we identify a goat-derived ubiquitous chromatin opening element (UCOE) in the SF3B1-COQ10B intergenic region, with a high GC content (65%) and CpG island enrichment. This UCOE improves hfCas12Max-mediated integration of large DNA fragments and maintains high-level expression of human lactoferrin (hLTF) in GMECs. Subsequently, we precisely integrate the UCOE-hLTF cassette into the highly accessible loci and generate a transgenic goat via somatic cell nuclear transfer, without detectable off-target effects. Our pipeline, which integrates chromatin accessibility profiling, UCOE discovery, and precision editing, demonstrates the role of CpG island-containing UCOEs in preventing transgene silencing. The study provides valuable tools for enhancing recombinant protein production and supports the breeding of dairy goats for milk with high lactoferrin content, while advancing the understanding of the interactions between chromatin, regulatory elements, and transgenes in molecular breeding.
  • loading
  • Ackermann, A.M., Wang, Z., Schug, J., Naji, A., Kaestner, K.H., 2016. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5, 233-244.
    Antoniou, M., Harland, L., Mustoe, T., Williams, S., Holdstock, J., Yague, E., Mulcahy, T., Griffiths, M., Edwards, S., Ioannou, P.A., et al., 2003. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 82, 269-279.
    Aznauryan, E., Yermanos, A., Kinzina, E., Devaux, A., Kapetanovic, E., Milanova, D., Church, G.M., Reddy, S.T., 2022. Discovery and validation of human genomic safe harbor sites for gene and cell therapies. Cell Rep. Methods 2, 100154.
    Bertolini, L.R., Meade, H., Lazzarotto, C.R., Martins, L.T., Tavares, K.C., Bertolini, M., Murray, J.D., 2016. The transgenic animal platform for biopharmaceutical production. Transgenic Res. 25, 329-343.
    Bian, P., Li, J., Zhou, S., Wang, X., Gong, M., Guo, X., Cai, Y., Yang, Q., Fu, J., Li, R., et al., 2024. A graph-based goat pangenome reveals structural variations involved in domestication and adaptation. Mol. Biol. Evol. 41, msae251.
    Birling, M.C., Yoshiki, A., Adams, D.J., Ayabe, S., Beaudet, A.L., Bottomley, J., Bradley, A., Brown, S.D.M., Burger, A., Bushell, W., et al., 2021. A resource of targeted mutant mouse lines for 5,061 genes. Nat. Genet. 53, 416-419.
    Brady, J.R., Tan, M.C., Whittaker, C.A., Colant, N.A., Dalvie, N.C., Love, K.R., Love, J.C., 2020. Identifying improved sites for heterologous gene integration using ATAC-seq. ACS Synth. Biol. 9, 2515-2524.
    Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., Greenleaf, W.J., 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213-1218.
    Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J., 2015. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9.
    Cabrera, A., Edelstein, H.I., Glykofrydis, F., Love, K.S., Palacios, S., Tycko, J., Zhang, M., Lensch, S., Shields, C.E., Livingston, M., et al., 2022. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst. 13, 950-973.
    Chen E., Lin-Shiao E., Trinidad M., Saffari Doost M., Colognori D., Doudna J.A., 2022a. Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proc. Natl. Acad. Sci. U. S. A. 119, e2204259119.
    Chen, Q., Zhou, L., Ma, D., Hou, J., Lin, Y., Wu, J., Tao, M., 2022b. LncRNA GAS6-AS1 facilitates tumorigenesis and metastasis of colorectal cancer by regulating TRIM14 through miR-370-3p/miR-1296-5p and FUS. J. Transl. Med. 20, 356.
    Concordet, J.P., Haeussler, M., 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242-W245.
    Ellis, J., 2005. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum. Gene Ther. 16, 1241-1246.
    Fan, K.L., Moore, J.E., Zhang, X.O., Weng, Z.P., 2021. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes. Nucleic Acids Res. 49, 5705-5725.
    Feng, R., Zhao, J., Zhang, Q., Zhu, Z., Zhang, J., Liu, C., Zheng, X., Wang, F., Su, J., Ma, X., et al., 2024. Generation of anti-mastitis gene-edited dairy goats with enhancing lysozyme expression by inflammatory regulatory sequence using ISDra2-TnpB system. Adv. Sci. 11, e2404408.
    Fromel, R., Ruhle, J., Bernal Martinez, A., Szu-Tu, C., Pacheco Pastor, F., Martinez-Corral, R., Velten, L., 2025. Design principles of cell-state-specific enhancers in hematopoiesis. Cell 188, 3202-3218.
    Godecke, N., Zha, L., Spencer, S., Behme, S., Riemer, P., Rehli, M., Hauser, H., Wirth, D., 2017. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation. Nucleic Acids Res. 45, e147.
    Gosai, S.J., Castro, R.I., Fuentes, N., Butts, J.C., Mouri, K., Alasoadura, M., Kales, S., Nguyen, T.T.L., Noche, R.R., Rao, A.S., et al., 2024. Machine-guided design of cell-type-targeting cis-regulatory elements. Nature 634, 1211-1220.
    Grand, R.S., Burger, L., Grawe, C., Michael, A.K., Isbel, L., Hess, D., Hoerner, L., Iesmantavicius, V., Durdu, S., Pregnolato, M., et al., 2021. BANP opens chromatin and activates CpG-island-regulated genes. Nature 596, 133-137.
    Grant, D.J., Shi, H., Teng, C.T., 1999. Tissue and site-specific methylation correlates with expression of the mouse lactoferrin gene. J. Mol. Endocrinol. 23, 45-55.
    Ho, S.C., Koh, E.Y., Soo, B.P., Mariati, Chao, S.H., Yang, Y., 2016. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol. 16, 71.
    Houdebine, L.M., 2009. Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis. 32, 107-121.
    Howes, A., Rogerson, C., Belyaev, N., Karagyozova, T., Rapiteanu, R., Fradique, R., Pellicciotta, N., Mayhew, D., Hurd, C., Crotta, S., et al., 2024. The FAM13A long isoform regulates cilia movement and coordination in airway mucociliary transport. Am. J. Resp. Cell Mol. 71, 282-293.
    Hunter, P., 2019. The prospects for recombinant proteins from transgenic animals: A few successes along with the advent of new technologies increase the allure of transgenic animals for the production of therapeutic human proteins. EMBO Rep. 20, e48757.
    Iyer, S., Mir, A., Vega-Badillo, J., Roscoe, B.P., Ibraheim, R., Zhu, L.J., Lee, J., Liu, P., Luk, K., Mintzer, E., et al., 2022. Efficient homology-directed repair with circular single-stranded DNA donors. CRISPR J. 5, 685-701.
    Jeltsch, A., Broche, J., Bashtrykov, P., 2019. Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes. Genes 10, 388.
    Jiang, Z., Lao, T., Qiu, W., Polverino, F., Gupta, K., Guo, F., Mancini, J.D., Naing, Z.Z.C., Cho, M.H., Castaldi, P.J., et al., 2016. A chronic obstructive pulmonary disease susceptibility gene, FAM13A, regulates protein stability of β-Catenin. Am. J. Resp. Crit. Care. 194, 185-197.
    Jin, Z., Chung, J.W., Mei, W., Strack, S., He, C., Lau, G.W., Yang, J., Margolis, B., 2015. Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt. Mol. Biol. Cell 26, 1160-1173.
    Kalds, P., Zhou, S., Cai, B., Liu, J., Wang, Y., Petersen, B., Sonstegard, T., Wang, X., Chen, Y., 2019. Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front. Genet. 10, 750.
    Krinner, S., Heitzer, A.P., Diermeier, S.D., Obermeier, I., Langst, G., Wagner, R., 2014. CpG domains downstream of TSSs promote high levels of gene expression. Nucleic Acids Res. 42, 3551-3564.
    Lee, Z., Raabe, M., Hu, W.S., 2021. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells. Biotechnol. Bioeng. 118, 1851-1861.
    Leng, L., Zhuang, K., Liu, Z., Huang, C., Gao, Y., Chen, G., Lin, H., Hu, Y., Wu, D., Shi, M., et al., 2018. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 100, 551-563.
    Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., et al., 2014. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res. 24, 501-504.
    Li, Z., Zhang, Y., Peng, B., Qin, S., Zhang, Q., Chen, Y., Chen, C., Bao, Y., Zhu, Y., Hong, Y., et al., 2024. A novel interpretable deep learning-based computational framework designed synthetic enhancers with broad cross-species activity. Nucleic Acids Res. 52, 13447-13468.
    Liu, J., Li, L.L., Du, S., Bai, X.Y., Zhang, H.D., Tang, S., Zhao, M.T., Ma, B.H., Quan, F.S., Zhao, X.E., et al., 2011. Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. Theriogenology 76, 1076-1083.
    Lombardo, A., Cesana, D., Genovese, P., Di Stefano, B., Provasi, E., Colombo, D.F., Neri, M., Magnani, Z., Cantore, A., Lo Riso, P., et al., 2011. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods 8, 861-869.
    Loza, M., Vandenbon, A., Nakai, K., 2024. Epigenetic characterization of housekeeping core promoters and their importance in tumor suppression. Nucleic Acids Res. 52, 1107-1119.
    Ma, L., Wang, Y., Wang, H., Hu, Y., Chen, J., Tan, T., Hu, M., Liu, X., Zhang, R., Xing, Y., et al., 2018. Screen and verification for transgene integration sites in pigs. Sci. Rep. 8, 7433.
    Mauro, V.P., 2018. Codon optimization in the production of recombinant biotherapeutics: potential risks and considerations. BioDrugs 32, 69-81.
    Meneu, L., Chapard, C., Serizay, J., Westbrook, A., Routhier, E., Ruault, M., Perrot, M., Minakakis, A., Girard, F., Bignaud, A., et al., 2025. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science 387, eadm9466.
    Muller-Kuller, U., Ackermann, M., Kolodziej, S., Brendel, C., Fritsch, J., Lachmann, N., Kunkel, H., Lausen, J., Schambach, A., Moritz, T., et al., 2015. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res. 43, 1577-1592.
    Natarajan, A., Yardimci, G.G., Sheffield, N.C., Crawford, G.E., Ohler, U., 2012. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res. 22, 1711-1722.
    Neville, J.J., Orlando, J., Mann, K., McCloskey, B., Antoniou, M.N., 2017. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol. Adv. 35, 557-564.
    O'Brien, S.A., Lee, K., Fu, H.Y., Lee, Z., Le, T.S., Stach, C.S., McCann, M.G., Zhang, A.Q., Smanski, M.J., Somia, N.V., et al., 2018. Single copy transgene integration in a transcriptionally active site for recombinant protein synthesis. Biotechnol. J. 13, e1800226.
    Pikaart, M.J., Recillas-Targa, F.l., Felsenfeld, G., 1998. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. 12, 2852-2862.
    Scholz, S.A., Lindeboom, C.D., Freddolino, P.L., 2022. Genetic context effects can override canonical cis regulatory elements in Escherichia coli. Nucleic Acids Res. 50, 10360-10375.
    Schwope, R., Magris, G., Miculan, M., Paparelli, E., Celii, M., Tocci, A., Marroni, F., Fornasiero, A., De Paoli, E., Morgante, M., 2021. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression. Plant J. 107, 1631-1647.
    Shepelev, M.V., Kalinichenko, S.V., Deykin, A.V., Korobko, I.V., 2018. Production of recombinant proteins in the milk of transgenic animals: current state and prospects. Acta Naturae 10, 40-47.
    Shin, H.Y., Willi, M., Yoo, K.H., Zeng, X.K., Wang, C.C., Metser, G., Hennighausen, L., 2016. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904-+.
    Sizer, R.E., White, R.J., 2023. Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput. Struct. Biotec. 21, 275-283.
    van Berkel, P.H., Welling, M.M., Geerts, M., van Veen, H.A., Ravensbergen, B., Salaheddine, M., Pauwels, E.K., Pieper, F., Nuijens, J.H., Nibbering, P.H., 2002. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 20, 484-487.
    Williams, S., Mustoe, T., Mulcahy, T., Griffiths, M., Simpson, D., Antoniou, M., Irvine, A., Mountain, A., Crombie, R., 2005. CpG-island fragments from the HNRPA2B1/CBX3genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 5, 17.
    Yang, P., Wang, J., Gong, G., Sun, X., Zhang, R., Du, Z., Liu, Y., Li, R., Ding, F., Tang, B., et al., 2008. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS ONE 3, e3453.
    Yin, C., Castillo-Hair, S., Byeon, G.W., Bromley, P., Meuleman, W.,Seelig, G., 2025. Iterative deep learning design of human enhancers exploits condensed sequence grammar to achieve cell-type specificity. Cell Syst. 16, 101302.
    Yuan, M., Zhang, J., Gao, Y., Yuan, Z., Zhu, Z., Wei, Y., Wu, T., Han, J., Zhang, Y., 2021. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis. J. Biol. Chem. 296, 100497.
    Zambrowicz, B.P., Imamoto, A., Fiering, S., Herzenberg, L.A., Kerr, W.G., Soriano, P., 1997. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A. 94, 3789-3794.
    Zhang, H., Kong, X., Xue, M., Hu, J., Wang, Z., Wei, Y., Wang, H., Zhou, J., Zhang, W., Xu, M., et al., 2023. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell 14, 538-543.
    Zhang, J., Li, L., Cai, Y., Xu, X., Chen, J., Wu, Y., Yu, H., Yu, G., Liu, S., Zhang, A., et al., 2008. Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expr. Purif. 57, 127-135.
    Zhang, T., Foreman, R., Wollman, R., 2020. Identifying chromatin features that regulate gene expression distribution. Sci. Rep. 10, 20566.
    Zhao, Z., Shang, P., Sage, F., Geijsen, N., 2022. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Nucleic Acids Res. 50, e62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (13) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return