5.9
CiteScore
5.9
Impact Factor

2011 Vol. 38, No. 10

Display Method:
Research article
Molecular genetics of cancer and tumorigenesis: Drosophila models
Wu-Min Deng
2011, 38(10): 429-430. doi: 10.1016/j.jgg.2011.09.010
Abstract (64) HTML PDF (0)
Abstract:
Tumor invasion and metastasis in Drosophila: A bold past, a bright future
Rhoda K.A. Stefanatos, Marcos Vidal
2011, 38(10): 431-438. doi: 10.1016/j.jgg.2011.09.004
Abstract (58) HTML PDF (0)
Abstract:
Invasion and metastasis are the most deadly hallmarks of cancer. Once a cancer has acquired the ability to colonize new sites in the body it becomes dramatically more difficult to treat. This has made it a focus of much of cancer research. The humble fruit fly, Drosophila melanogaster, has despite its relative simplicity, made significant contributions to the understanding of tumor progression. In this review we outline and highlight those with an emphasis on modeling the genetic and epigenetic changes required for invasion and metastasis. We will revisit the early years of cancer modeling in Drosophila where the first parallels were drawn between Drosophila and vertebrate neoplasms and highlight recent advances using genetic screens and interactions with the epithelial microenvironment and innate immune system. We focus on the power and limitations of current fly models of metastasis.
Dysregulation of CDK8 and Cyclin C in tumorigenesis
Wu Xu, Jun-Yuan Ji
2011, 38(10): 439-452. doi: 10.1016/j.jgg.2011.09.002
Abstract (74) HTML PDF (0)
Abstract:
Appropriately controlled gene expression is fundamental for normal growth and survival of all living organisms. In eukaryotes, the transcription of protein-coding mRNAs is dependent on RNA polymerase II (Pol II). The multi-subunit transcription cofactor Mediator complex is proposed to regulate most, if not all, of the Pol II-dependent transcription. Here we focus our discussion on two subunits of the Mediator complex, cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC), because they are either mutated or amplified in a variety of human cancers. CDK8 functions as an oncoprotein in melanoma and colorectal cancers, thus there are considerable interests in developing drugs specifically targeting the CDK8 kinase activity. However, to evaluate the feasibility of targeting CDK8 for cancer therapy and to understand how their dysregulation contributes to tumorigenesis, it is essential to elucidate the in vivo function and regulation of CDK8-CycC, which are still poorly understood in multi-cellular organisms. We summarize the evidence linking their dysregulation to various cancers and present our bioinformatics and computational analyses on the structure and evolution of CDK8. We also discuss the implications of these observations in tumorigenesis. Because most of the Mediator subunits, including CDK8 and CycC, are highly conserved during eukaryotic evolution, we expect that investigations using model organisms such as Drosophila will provide important insights into the function and regulation of CDK8 and CycC in different cellular and developmental contexts.
Extra sex combs, chromatin, and cancer: Exploring epigenetic regulation and tumorigenesis in Drosophila
Can Zhang, Bo Liu, Guangyao Li, Lei Zhou
2011, 38(10): 453-460. doi: 10.1016/j.jgg.2011.09.007
Abstract (100) HTML PDF (0)
Abstract:
Developmental genetic studies in Drosophila unraveled the importance of Polycomb group (PcG) and Trithorax group (TrxG) genes in controlling cellular identity. PcG and TrxG proteins form histone modifying complexes that catalyze repressive or activating histone modifications, respectively, and thus maintaining the expression status of homeotic genes. Human orthologs of PcG and TrxG genes are implicated in tumorigenesis as well as in determining the prognosis of individual cancers. Recent whole genome analyses of cancers also highlighted the importance of histone modifying proteins in controlling tumorigenesis. Comprehensive understanding of the mechanistic relationship between histone regulation and tumorigenesis holds the promise of significantly advancing our understanding and management of cancer. It is anticipated that Drosophila melanogaster, the model organism that contributed significantly to our understanding of the functional role of histone regulation in development, could also provide unique insight for our understanding of how histone dysregulation can lead to cancer. In this review, we will discuss several recent advances in this regard.
Deciphering tumor-suppressor signaling in flies: Genetic link between Scribble/Dlg/Lgl and the Hippo pathways
Masato Enomoto, Tatsushi Igaki
2011, 38(10): 461-470. doi: 10.1016/j.jgg.2011.09.005
Abstract (74) HTML PDF (0)
Abstract:
Loss of apico-basal polarity is one of the crucial factors that drives epithelial tumor progression. scribble/discs large/lethal giant larvae (scrib/dlg/lgl), a group of apico-basal polarity genes, were initially identified as members of “neoplastic” tumor-suppressors in flies. The components of the Hippo signaling pathway, which is crucial for organ size control and cancer development, were also identified through Drosophila genetic screens as members of “hyperplastic” tumor-suppressors. Accumulating evidence in recent studies implies that these two tumor-suppressor signaling pathways are not mutually exclusive but rather cooperatively act to give rise to highly malignant tumors. The interaction of these tumor-suppressor pathways could include deregulations of actin cytoskeleton, cell–cell contact, and apical-domain size of the epithelial cell.
Hippo signaling: A hub of growth control, tumor suppression and pluripotency maintenance
Mengxin Yin, Lei Zhang
2011, 38(10): 471-481. doi: 10.1016/j.jgg.2011.09.009
Abstract (92) HTML PDF (0)
Abstract:
The molecular mechanisms of organ size control and regulation remain one of the major unsolved mysteries of development biology. Almost a decade ago, the discovery of the Hippo signaling pathway in Drosophila shed some light on this puzzling issue. The Hippo signaling pathway is highly conserved in both invertebrates and vertebrates, and plays critical roles in animal development. It controls organ size and growth by inhibiting cell proliferation and by promoting apoptosis. Malfunction of the Hippo signaling pathway leads to cancer development and tumorigenesis. Although the core of the signaling pathway is well understood, the upstream inputs and downstream transcriptional regulation are still obscure to us. In this review, we summarize the current understanding of the mechanism and the function of the Hippo signaling pathway and compare its differences between flies and mammals. We underline the crosstalk between the Hippo signaling pathway and other signaling pathways, and the possible roles of the Hippo pathway in stem cell proliferation and self-renewal.
Cell competition and its implications for development and cancer
Yoichiro Tamori, Wu-Min Deng
2011, 38(10): 483-495. doi: 10.1016/j.jgg.2011.09.006
Abstract (80) HTML PDF (0)
Abstract:
Cell competition is a struggle for existence between cells in heterogeneous tissues of multicellular organisms. Loser cells, which die during cell competition, are normally viable when grown only with other loser cells, but when mixed with winner cells, they are at a growth disadvantage and undergo apoptosis. Intriguingly, several recent studies have revealed that cells bearing mutant tumor-suppressor genes, which show overgrowth and tumorigenesis in a homotypic situation, are frequently eliminated, through cell competition, from tissues in which they are surrounded by wild-type cells. Here, we focus on the regulation of cellular competitiveness and the mechanism of cell competition as inferred from two different categories of mutant cells: (1) slower-growing cells and (2) structurally defective cells. We also discuss the possible role of cell competition as an intrinsic homeostasis system through which normal cells sense and remove aberrant cells, such as precancerous cells, to maintain the integrity and normal development of tissues and organs.
Chemical genetics and drug screening in Drosophila cancer models
Mara Gladstone, Tin Tin Su
2011, 38(10): 497-504. doi: 10.1016/j.jgg.2011.09.003
Abstract (93) HTML PDF (0)
Abstract:
Drug candidates often fail in preclinical and clinical testing because of reasons of efficacy and/or safety. It would be time- and cost-efficient to have screening models that reduce the rate of such false positive candidates that appear promising at first but fail later. In this regard, it would be particularly useful to have a rapid and inexpensive whole animal model that can pre-select hits from high-throughput screens but before testing in costly rodent assays. Drosophila melanogaster has emerged as a potential whole animal model for drug screening. Of particular interest have been drugs that must act in the context of multi-cellularity such as those for neurological disorders and cancer. A recent review provides a comprehensive summary of drug screening in Drosophila, but with an emphasis on neurodegenerative disorders. Here, we review Drosophila screens in the literature aimed at cancer therapeutics.