5.9
CiteScore
5.9
Impact Factor
Volume 41 Issue 3
Mar.  2014
Turn off MathJax
Article Contents

The Role of Chromatin Modifications in Progression through Mouse Meiotic Prophase

doi: 10.1016/j.jgg.2014.01.003
More Information
  • Corresponding author: E-mail address: Ian.Adams@igmm.ed.ac.uk (Ian R. Adams)
  • Received Date: 2013-10-15
  • Accepted Date: 2014-01-06
  • Rev Recd Date: 2013-12-10
  • Available Online: 2014-01-22
  • Publish Date: 2014-03-20
  • Meiosis is a key event in gametogenesis that generates new combinations of genetic information and is required to reduce the chromosome content of the gametes. Meiotic chromosomes undergo a number of specialised events during prophase to allow meiotic recombination, homologous chromosome synapsis and reductional chromosome segregation to occur. In mammalian cells, DNA physically associates with histones to form chromatin, which can be modified by methylation, phosphorylation, ubiquitination and acetylation to help regulate higher order chromatin structure, gene expression, and chromosome organisation. Recent studies have identified some of the enzymes responsible for generating chromatin modifications in meiotic mammalian cells, and shown that these chromatin modifying enzymes are required for key meiosis-specific events that occur during meiotic prophase. This review will discuss the role of chromatin modifications in meiotic recombination, homologous chromosome synapsis and regulation of meiotic gene expression in mammals.
  • loading
  • [1]
    Baarends, W.M., Wassenaar, E., Hoogerbrugge, J.W. et al. Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome J. Cell Sci., 120 (2007),pp. 1841-1851
    [2]
    Baarends, W.M., Wassenaar, E., van der Laan, R. et al. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis Mol. Cell. Biol., 25 (2005),pp. 1041-1053
    [3]
    Baltus, A.E., Menke, D.B., Hu, Y.-C. et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication Nat. Genet., 38 (2006),pp. 1430-1434
    [4]
    Bannister, A.J., Kouzarides, T. Regulation of chromatin by histone modifications Cell Res., 21 (2011),pp. 381-395
    [5]
    Bannister, A.J., Zegerman, P., Partridge, J.F. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain Nature, 410 (2001),pp. 120-124
    [6]
    Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [7]
    Baudat, F., Buard, J., Grey, C. et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice Science, 327 (2010),pp. 836-840
    [8]
    Baudat, F., Manova, K., Yuen, J.P. et al. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11 Mol. Cell, 6 (2000),pp. 989-998
    [9]
    Baumann, C., De La Fuente, R. Role of polycomb group protein Cbx2/M33 in meiosis onset and maintenance of chromosome stability in the mammalian germline Genes (Basel.), 2 (2011),pp. 59-80
    [10]
    Bellani, M.A., Romanienko, P.J., Cairatti, D.A. et al. SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm-/- spermatocytes J. Cell Sci., 118 (2005),pp. 3233-3245
    [11]
    Borde, V., de Massy, B. Programmed induction of DNA double strand breaks during meiosis: setting up communication between DNA and the chromosome structure Curr. Opin. Genet. Dev., 23 (2013),pp. 147-155
    [12]
    Bourc'his, D., Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L Nature, 431 (2004),pp. 96-99
    [13]
    Bourc'his, D., Xu, G.L., Lin, C.S. et al. Dnmt3L and the establishment of maternal genomic imprints Science, 294 (2001),pp. 2536-2539
    [14]
    Braun, S., Madhani, H.D. Shaping the landscape: mechanistic consequences of ubiquitin modification of chromatin EMBO Rep., 13 (2012),pp. 619-630
    [15]
    Brick, K., Smagulova, F., Khil, P. et al. Genetic recombination is directed away from functional genomic elements in mice Nature, 485 (2012),pp. 642-645
    [16]
    Buard, J., Barthès, P., Grey, C. et al. Distinct histone modifications define initiation and repair of meiotic recombination in the mouse EMBO J., 28 (2009),pp. 2616-2624
    [17]
    Cao, J., Yan, Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer Front. Oncol., 2 (2012),p. 26
    [18]
    Cao, R., Tsukada, Y.-I., Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing Mol. Cell, 20 (2005),pp. 845-854
    [19]
    Cao, R., Wang, L., Wang, H. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing Science, 298 (2002),pp. 1039-1043
    [20]
    Carmell, M.A., Girard, A., van de Kant, H.J.G. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline Dev. Cell, 12 (2007),pp. 503-514
    [21]
    Cedar, H., Bergman, Y. Programming of DNA methylation patterns Annu. Rev. Biochem., 81 (2012),pp. 97-117
    [22]
    Celeste, A., Petersen, S., Romanienko, P.J. et al. Genomic instability in mice lacking histone H2AX Science, 296 (2002),pp. 922-927
    [23]
    Chicheportiche, A., Bernardino-Sgherri, J., de Massy, B. et al. Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse J. Cell Sci., 120 (2007),pp. 1733-1742
    [24]
    Cohen, P.E., Pollack, S.E., Pollard, J.W. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals Endocr. Rev., 27 (2006),pp. 398-426
    [25]
    Crichton, J.H., Dunican, D.S., Maclennan, M. et al. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline Cell. Mol. Life Sci (2013)
    [26]
    Deaton, A.M., Bird, A. CpG islands and the regulation of transcription Genes Dev., 25 (2011),pp. 1010-1022
    [27]
    De La Fuente, R., Baumann, C., Fan, T. et al. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells Nat. Cell Biol., 8 (2006),pp. 1448-1454
    [28]
    Dennis, K., Fan, T., Geiman, T. et al. Lsh, a member of the SNF2 family, is required for genome-wide methylation Genes Dev., 15 (2001),pp. 2940-2944
    [29]
    Endoh, M., Endo, T.A., Endoh, T. et al. Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity PLoS Genet., 8 (2012),p. e1002774
    [30]
    Eskeland, R., Leeb, M., Grimes, G.R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination Mol. Cell, 38 (2010),pp. 452-464
    [31]
    Fernandez-Capetillo, O., Mahadevaiah, S.K., Celeste, A. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis Dev. Cell, 4 (2003),pp. 497-508
    [32]
    Gaucher, J., Boussouar, F., Montellier, E. et al. Bromodomain-dependent stage-specific male genome programming by Brdt EMBO J., 31 (2012),pp. 3809-3820
    [33]
    Grey, C., Barthès, P., Chauveau-Le Friec, G. et al. Mouse PRDM9 DNA-binding specificity determines sites of histone H3 lysine 4 trimethylation for initiation of meiotic recombination PLoS Biol., 9 (2011),p. e1001176
    [34]
    Hackett, J.A., Reddington, J.P., Nestor, C.E. et al. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline Development, 139 (2012),pp. 3623-3632
    [35]
    Hackett, J.A., Sengupta, R., Zylicz, J.J. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine Science, 339 (2013),pp. 448-452
    [36]
    Hackett, J.A., Surani, M.A. DNA methylation dynamics during the mammalian life cycle Philos. Trans. R. Soc. Lond. B Biol. Sci., 368 (2013),p. 20110328
    [37]
    Hajkova, P., Erhardt, S., Lane, N. et al. Epigenetic reprogramming in mouse primordial germ cells Mech. Dev., 117 (2002),pp. 15-23
    [38]
    Handel, M.A., Schimenti, J.C. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility Nat. Rev. Genet., 11 (2010),pp. 124-136
    [39]
    Hata, K., Okano, M., Lei, H. et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice Development, 129 (2002),pp. 1983-1993
    [40]
    Hayashi, K., Yoshida, K., Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase Nature, 438 (2005),pp. 374-378
    [41]
    Hendrich, B., Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins Mol. Cell. Biol., 18 (1998),pp. 6538-6547
    [42]
    Ichijima, Y., Ichijima, M., Lou, Z. et al. MDC1 directs chromosome-wide silencing of the sex chromosomes in male germ cells Genes Dev., 25 (2011),pp. 959-971
    [43]
    Ito, S., Shen, L., Dai, Q. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine Science, 333 (2011),pp. 1300-1303
    [44]
    Kaneda, M., Okano, M., Hata, K. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting Nature, 429 (2004),pp. 900-903
    [45]
    Kato, Y., Kaneda, M., Hata, K. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse Hum. Mol. Genet., 16 (2007),pp. 2272-2280
    [46]
    Khalil, A.M., Boyar, F.Z., Driscoll, D.J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 16583-16587
    [47]
    Kouznetsova, A., Wang, H., Bellani, M. et al. BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes J. Cell Sci., 122 (2009),pp. 2446-2452
    [48]
    La Salle, S., Mertineit, C., Taketo, T. et al. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells Dev. Biol., 268 (2004),pp. 403-415
    [49]
    Leeb, M., Pasini, D., Novatchkova, M. et al. Polycomb complexes act redundantly to repress genomic repeats and genes Genes Dev., 24 (2010),pp. 265-276
    [50]
    Lewis, J.D., Meehan, R.R., Henzel, W.J. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA Cell, 69 (1992),pp. 905-914
    [51]
    Lu, L.-Y., Wu, J., Ye, L. et al. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis Dev. Cell, 18 (2010),pp. 371-384
    [52]
    Mahadevaiah, S.K., Bourc'his, D., de Rooij, D.G. et al. Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation J. Cell Biol., 182 (2008),pp. 263-276
    [53]
    Mahadevaiah, S.K., Turner, J.M., Baudat, F. et al. Recombinational DNA double-strand breaks in mice precede synapsis Nat. Genet., 27 (2001),pp. 271-276
    [54]
    Meissner, A., Mikkelsen, T.S., Gu, H. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells Nature, 454 (2008),pp. 766-770
    [55]
    Mihola, O., Trachtulec, Z., Vlcek, C. et al. A mouse speciation gene encodes a meiotic histone H3 methyltransferase Science, 323 (2009),pp. 373-375
    [56]
    Musselman, C.A., Lalonde, M.-E., Côté, J. et al. Perceiving the epigenetic landscape through histone readers Nat. Struct. Mol. Biol., 19 (2012),pp. 1218-1227
    [57]
    Myant, K., Stancheva, I. LSH cooperates with DNA methyltransferases to repress transcription Mol. Cell. Biol., 28 (2008),pp. 215-226
    [58]
    Nickerson, H.D., Joshi, A., Wolgemuth, D.J. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis Dev. Biol., 306 (2007),pp. 725-735
    [59]
    Okano, M., Bell, D.W., Haber, D.A. et al. Cell, 99 (1999),pp. 247-257
    [60]
    Ollinger, R., Reichmann, J., Adams, I.R. Meiosis and retrotransposon silencing during germ cell development in mice Differentiation, 79 (2010),pp. 147-158
    [61]
    Peters, A.H., O'Carroll, D., Scherthan, H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability Cell, 107 (2001),pp. 323-337
    [62]
    Pivot-Pajot, C., Caron, C., Govin, J. et al. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein Mol. Cell. Biol., 23 (2003),pp. 5354-5365
    [63]
    Prokhortchouk, A., Hendrich, B., Jørgensen, H. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor Genes Dev., 15 (2001),pp. 1613-1618
    [64]
    Reddington, J.P., Pennings, S., Meehan, R.R. Non-canonical functions of the DNA methylome in gene regulation Biochem. J., 451 (2013),pp. 13-23
    [65]
    Reddington, J.P., Perricone, S.M., Nestor, C.E. et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of polycomb target genes Genome Biol., 14 (2013),p. R25
    [66]
    Reichmann, J., Crichton, J.H., Madej, M.J. et al. Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells PLoS Comput. Biol., 8 (2012),p. e1002486
    [67]
    Reichmann, J., Reddington, J.P., Best, D. et al. The genome-defence gene Tex19.1 suppresses LINE-1 retrotransposons in the placenta and prevents intra-uterine growth retardation in mice Hum. Mol. Genet., 22 (2013),pp. 1791-1806
    [68]
    Rogakou, E.P., Pilch, D.R., Orr, A.H. et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139 J. Biol. Chem., 273 (1998),pp. 5858-5868
    [69]
    Romanienko, P.J., Camerini-Otero, R.D. The mouse Spo11 gene is required for meiotic chromosome synapsis Mol. Cell, 6 (2000),pp. 975-987
    [70]
    Sasaki, K., Ito, T., Nishino, N. et al. Real-time imaging of histone H4 hyperacetylation in living cells Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 16257-16262
    [71]
    Schneider, R., Bannister, A.J., Myers, F.A. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes Nat. Cell Biol., 6 (2004),pp. 73-77
    [72]
    Seki, Y., Hayashi, K., Itoh, K. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice Dev. Biol., 278 (2005),pp. 440-458
    [73]
    Simon, J.A., Kingston, R.E. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put Mol. Cell, 49 (2013),pp. 808-824
    [74]
    Smagulova, F., Gregoretti, I.V., Brick, K. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots Nature, 472 (2011),pp. 375-378
    [75]
    Suetake, I., Shinozaki, F., Miyagawa, J. et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction J. Biol. Chem., 279 (2004),pp. 27816-27823
    [76]
    Sun, L.-Q., Lee, D.W., Zhang, Q. et al. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG Genes Dev., 18 (2004),pp. 1035-1046
    [77]
    Tachibana, M., Nozaki, M., Takeda, N. et al. Functional dynamics of H3K9 methylation during meiotic prophase progression EMBO J., 26 (2007),pp. 3346-3359
    [78]
    Takada, Y., Naruse, C., Costa, Y. et al. HP1γ links histone methylation marks to meiotic synapsis in mice Development, 138 (2011),pp. 4207-4217
    [79]
    Tan, M., Luo, H., Lee, S. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification Cell, 146 (2011),pp. 1016-1028
    [80]
    Tavares, L., Dimitrova, E., Oxley, D. et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 Cell, 148 (2012),pp. 664-678
    [81]
    Turner, J.M.A. Meiotic sex chromosome inactivation Development, 134 (2007),pp. 1823-1831
    [82]
    Turner, J.M.A., Mahadevaiah, S.K., Fernandez-Capetillo, O. et al. Silencing of unsynapsed meiotic chromosomes in the mouse Nat. Genet., 37 (2005),pp. 41-47
    [83]
    Weber, M., Hellmann, I., Stadler, M.B. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome Nat. Genet., 39 (2007),pp. 457-466
    [84]
    Webster, K.E., O'Bryan, M.K., Fletcher, S. et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 4068-4073
    [85]
    Wiench, M., John, S., Baek, S. et al. DNA methylation status predicts cell type-specific enhancer activity EMBO J., 30 (2011),pp. 3028-3039
    [86]
    Yamaguchi, S., Hong, K., Liu, R. et al. Tet1 controls meiosis by regulating meiotic gene expression Nature, 492 (2012),pp. 443-447
    [87]
    Yaman, R., Grandjean, V. Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis Mol. Reprod. Dev., 73 (2006),pp. 390-397
    [88]
    Yokobayashi, S., Liang, C.-Y., Kohler, H. et al. PRC1 coordinates timing of sexual differentiation of female primordial germ cells Nature, 495 (2013),pp. 236-240
    [89]
    Zeng, W., Baumann, C., Schmidtmann, A. et al. Lymphoid-specific helicase (HELLS) is essential for meiotic progression in mouse spermatocytes Biol. Reprod., 84 (2011),pp. 1235-1241
    [90]
    Zentner, G.E., Henikoff, S. Regulation of nucleosome dynamics by histone modifications Nat. Struct. Mol. Biol., 20 (2013),pp. 259-266
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (69) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return