[1] |
Barth, S., Busimi, A.K., Friedrich Utz, H. et al. Heynh. Heredity, 91 (2003),pp. 36-42
|
[2] |
Cockerham, C.C. An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present Genetics, 39 (1954),pp. 859-882
|
[3] |
Cui, H., Peng, B., Xing, Z. et al. Molecular dissection of seedling-vigor and associated physiological traits in rice Theor. Appl. Genet., 105 (2002),pp. 745-753
|
[4] |
Cui, K., Huang, J., Xing, Y. et al. Physiol. Plant, 132 (2008),pp. 53-68
|
[5] |
Frascaroli, E., Cane, M.A., Landi, P. et al. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines Genetics, 176 (2007),pp. 625-644
|
[6] |
Hoecker, N., Keller, B., Piepho, H.P. et al. Theor. Appl. Genet., 112 (2006),pp. 421-429
|
[7] |
Hua, J., Xing, Y., Wu, W. et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 2574-2579
|
[8] |
Hua, J.P., Xing, Y.Z., Xu, C.G. et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance Genetics, 162 (2002),pp. 1885-1895
|
[9] |
Huang, Y., Zhang, L., Zhang, J. et al. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs Plant Mol. Biol., 62 (2006),pp. 579-591
|
[10] |
Kearsey, M.J., Pooni, H.S., Syed, N.H. Heredity, 91 (2003),pp. 456-464
|
[11] |
Kusterer, B., Muminovic, J., Utz, H.F. et al. Genetics, 175 (2007),pp. 2009-2017
|
[12] |
Kusterer, B., Piepho, H.P., Utz, H.F. et al. Genetics, 177 (2007),pp. 1839-1850
|
[13] |
Li, L.Z., Lu, K.Y., Chen, Z.M. et al. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids Genetics, 180 (2008),pp. 1725-1742
|
[14] |
Li, Z.K., Luo, L.J., Mei, H.W. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield Genetics, 158 (2001),pp. 1737-1753
|
[15] |
Luo, L.J., Li, Z.K., Mei, H.W. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components Genetics, 158 (2001),pp. 1755-1771
|
[16] |
Luo, X.J., Xin, X.Y., Yang, J.S. Genet. Res., 94 (2012),pp. 57-61
|
[17] |
Ma, Q., Hedden, P., Zhang, Q. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes Plant Physiol., 156 (2011),pp. 1905-1920
|
[18] |
Melchinger, A.E., Piepho, H.P., Utz, H.F. et al. Genetics, 177 (2007),pp. 1827-1837
|
[19] |
Meyer, R.C., Kusterer, B., Lisec, J. et al. Theor. Appl. Genet., 120 (2010),pp. 227-237
|
[20] |
Meyer, R.C., Torjek, O., Becher, M. et al. Plant Physiol., 134 (2004),pp. 1813-1823
|
[21] |
Semel, Y., Nissenbaum, J., Menda, N. et al. Overdominant quantitative trait loci for yield and fitness in tomato Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 12981-12986
|
[22] |
Snedecor, G.W., Cochran, W.G.
|
[23] |
Syed, N.H., Chen, Z.J. Heredity, 94 (2005),pp. 295-304
|
[24] |
Tollenaar, M., Ahmadzadeh, A., Lee, E.A. Physiological basis of heterosis for grain yield in maize Crop Sci., 44 (2004),pp. 2086-2094
|
[25] |
Xiao, J., Li, J., Yuan, L. et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers Genetics, 140 (1995),pp. 745-754
|
[26] |
Xie, W., Feng, Q., Yu, H. et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10578-10583
|
[27] |
Xin, X.Y., Wang, W.X., Yang, J.S. et al. Breed. Sci., 61 (2011),pp. 380-388
|
[28] |
Xing, Y.Z., Tan, Y.F., Hua, J.P. et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice Theor. Appl. Genet., 105 (2002),pp. 248-257
|
[29] |
Xu, C.G., Li, X.Q., Xue, Y. et al. Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines Theor. Appl. Genet., 109 (2004),pp. 640-647
|
[30] |
Yoshida, S., Forno, D.A., Cock, J.
|
[31] |
Yu, H., Xie, W., Wang, J. et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers PLoS One, 6 (2011),p. e17595
|
[32] |
Yu, S.B., Li, J.X., Xu, C.G. et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 9226-9231
|
[33] |
Zhai, R., Feng, Y., Wang, H. et al. Transcriptome analysis of rice root heterosis by RNA-Seq BMC Genomics, 14 (2013),p. 19
|
[34] |
Zhang, H.Y., He, H., Chen, L.B. et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids Mol. Plant, 1 (2008),pp. 720-731
|
[35] |
Zhou, G., Chen, Y., Yao, W. et al. Genetic composition of yield heterosis in an elite rice hybrid Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15847-15852
|