5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 11
Nov.  2021
Turn off MathJax
Article Contents

Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis

doi: 10.1016/j.jgg.2021.06.011
Funds:

We sincerely thank all ex- and present members in the JRP lab who contributed to the work summarized in this review. This study was supported by the National Key R&D Program of China and the Natural Science Foundation of China in the order of 2018YFA0800502, 2017YFA0504501, 31330050.

  • Received Date: 2021-04-10
  • Accepted Date: 2021-06-17
  • Rev Recd Date: 2021-06-16
  • Publish Date: 2021-11-20
  • The nucleolus, as the ‘nucleus of the nucleus’, is a prominent subcellular organelle in a eukaryocyte. The nucleolus serves as the centre for ribosome biogenesis, as well as an important site for cell-cycle regulation, cellular senescence, and stress response. The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses. Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans, namely the Def-CAPN3 pathway, which is essential to ribosome production and cell-cycle progression, by controlling the turnover of multiple substrates (e.g., ribosomal small-subunit[SSU] processome component Mpp10, transcription factor p53, check-point proteins Chk1 and Wee1). This pathway relies on the Ca2+-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway. CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus, where it proteolyzes its substrates which harbor a CAPN3 recognition-motif. Def depletion leads to the exclusion of CAPN3 and accumulation of p53, Wee1, Chk1, and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality. Here, we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis.
  • These authors contributed equally to this work
  • loading
  • Abdelmohsen, K., Gorospe, M., 2012. RNA-binding protein nucleolin in disease. RNA Biol. 9, 799-808.
    Ahmad, Y., Boisvert, F.M., Gregor, P., Cobley, A., Lamond, A.I., 2009. NOPdb:nucleolar proteome database-2008 update. Nucleic Acids Res. 37, D181-D184.
    Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I., Mann, M., 2005. Nucleolar proteome dynamics. Nature 433, 77-83.
    Barnum, K.J., O'Connell, M.J., 2014. Cell cycle regulation by checkpoints. Methods Mol. Biol. 1170, 29-40.
    Baserga, S.J., Agentis, T.M., Wormsley, S., Dunbar, D.A., Lee, S., 1997. Mpp10p, a new protein component of the U3 snoRNP required for processing of 18S rRNA precursors. Nucleic Acids Symp. Ser. 64-67.
    Bassler, J., Hurt, E., 2019. Eukaryotic ribosome assembly. Annu. Rev. Biochem. 88, 281-306.
    Boisvert, F.M., van Koningsbruggen, S., Navascues, J., Lamond, A.I., 2007. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 8, 574-585.
    Charette, J.M., Baserga, S.J., 2010. The DEAD-box RNA helicase-like Utp25 is an SSU processome component. RNA 16, 2156-2169.
    Charton, K., Sarparanta, J., Vihola, A., Milic, A., Jonson, P.H., Suel, L., Luque, H., Boumela, I., Richard, I., Udd, B., 2015. CAPN3-mediated processing of C-terminal titin replaced by pathological cleavage in titinopathy. Hum. Mol. Genet. 24, 3718-3731.
    Chen, F., Huang, D., Shi, H., Gao, C., Wang, Y., Peng, J., 2020. Capn3 depletion causes Chk1 and Wee1 accumulation and disrupts synchronization of cell cycle reentry during liver regeneration after partial hepatectomy. Cell Regen. 9, 8.
    Chen, J., Ng, S.M., Chang, C., Zhang, Z., Bourdon, J.C., Lane, D.P., Peng, J., 2009a. p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev. 23, 278-290.
    Chen, J., Ruan, H., Ng, S.M., Gao, C., Soo, H.M., Wu, W., Zhang, Z., Wen, Z., Lane, D.P., Peng, J., 2005. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev. 19, 2900-2911.
    Chen, Y.H., Lu, Y.F., Ko, T.Y., Tsai, M.Y., Lin, C.Y., Lin, C.C., Hwang, S.P., 2009b. Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev. Dynam. 238, 1021-1032.
    Colombo, E., Alcalay, M., Pelicci, P.G., 2011. Nucleophosmin and its complex network:a possible therapeutic target in hematological diseases. Oncogene 30, 2595-2609.
    Coute, Y., Burgess, J.A., Diaz, J.J., Chichester, C., Lisacek, F., Greco, A., Sanchez, J.C., 2006. Deciphering the human nucleolar proteome. Mass Spectrom. Rev. 25, 215-234.
    de Morree, A., Lutje Hulsik, D., Impagliazzo, A., van Haagen, H.H., de Galan, P., van Remoortere, A., t Hoen, P.A., van Ommen, G.B., Frants, R.R., van der Maarel, S.M., 2010. Calpain 3 is a rapid-action, unidirectional proteolytic switch central to muscle remodeling. PLoS One 5, e11940.
    den Brave, F., Cairo, L.V., Jagadeesan, C., Ruger-Herreros, C., Mogk, A., Bukau, B., Jentsch, S., 2020. Chaperone-mediated protein disaggregation triggers proteolytic clearance of intra-nuclear protein inclusions. Cell Rep. 31, 107680.
    Enam, C., Geffen, Y., Ravid, T., Gardner, R.G., 2018. Protein quality control degradation in the nucleus. Annu. Rev. Biochem. 87, 725-749.
    Farley-Barnes, K.I., Ogawa, L.M., Baserga, S.J., 2019. Ribosomopathies:old concepts, new controversies. Trends Genet. 35, 754-767.
    Feng, G., Long, Y., Peng, J., Li, Q., Cui, Z., 2015. Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. BMC Genom. 16, 979.
    Franic, D., Zubcic, K., Boban, M., 2021. Nuclear ubiquitin-proteasome pathways in proteostasis maintenance. Biomolecules 11, 54.
    Fredrickson, E.K., Gallagher, P.S., Clowes Candadai, S.V., Gardner, R.G., 2013. Substrate recognition in nuclear protein quality control degradation is governed by exposed hydrophobicity that correlates with aggregation and insolubility. J. Biol. Chem. 288, 6130-6139.
    Fredrickson, E.K., Rosenbaum, J.C., Locke, M.N., Milac, T.I., Gardner, R.G., 2011. Exposed hydrophobicity is a key determinant of nuclear quality control degradation. Mol. Biol. Cell 22, 2384-2395.
    Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Korner, R., Schlichthaerle, T., Cox, J., Jungmann, R., Hartl, F.U., Hipp, M.S., 2019. The nucleolus functions as a phaseseparated protein quality control compartment. Science 365, 342-347.
    Goldfeder, M.B., Oliveira, C.C., 2010. Utp25p, a nucleolar Saccharomyces cerevisiae protein, interacts with U3 snoRNP subunits and affects processing of the 35S pre-rRNA. FEBS J. 277, 2838-2852.
    Gong, L., Gong, H., Pan, X., Chang, C., Ou, Z., Ye, S., Yin, L., Yang, L., Tao, T., Zhang, Z., Liu, C., Lane, D.P., Peng, J., Chen, J., 2015. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 25, 351-369.
    Granneman, S., Gallagher, J.E., Vogelzangs, J., Horstman, W., van Venrooij, W.J., Baserga, S.J., Pruijn, G.J., 2003. The human Imp3 and Imp4 proteins form a ternary complex with hMpp10, which only interacts with the U3 snoRNA in 60-80S ribonucleoprotein complexes. Nucleic Acids Res. 31, 1877-1887.
    Guan, Y., Huang, D., Chen, F., Gao, C., Tao, T., Shi, H., Zhao, S., Liao, Z., Lo, L.J., Wang, Y., Chen, J., Peng, J., 2016. Phosphorylation of def regulates nucleolar p53 turnover and cell cycle progression through def recruitment of Calpain3. PLoS Biol. 14, e1002555.
    Harscoet, E., Dubreucq, B., Palauqui, J.C., Lepiniec, L., 2010. NOF1 encodes an Arabidopsis protein involved in the control of rRNA expression. PLoS One 5, e12829.
    Henras, A.K., Plisson-Chastang, C., O'Donohue, M.F., Chakraborty, A., Gleizes, P.E., 2015. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdis. Rev. RNA 6, 225-242.
    Huang, W., Chen, F., Ma, Q., Xin, J., Li, J., Chen, J., Zhou, B., Chen, M., Li, J., Peng, J., 2020. Ribosome biogenesis gene DEF/UTP25 is essential for liver homeostasis and regeneration. Sci. China Life Sci. 63, 1651-1664.
    Iarovaia, O.V., Minina, E.P., Sheval, E.V., Onichtchouk, D., Dokudovskaya, S., Razin, S.V., Vassetzky, Y.S., 2019. Nucleolus:a central hub for nuclear functions. Trends Cell Biol. 29, 647-659.
    Kamakaka, R.T., Rine, J., 1998. Sir- and silencer-independent disruption of silencing in Saccharomyces by Sas10p. Genetics 149, 903-914.
    Khmelinskii, A., Blaszczak, E., Pantazopoulou, M., Fischer, B., Omnus, D.J., Le Dez, G., Brossard, A., Gunnarsson, A., Barry, J.D., Meurer, M., et al., 2014. Protein quality control at the inner nuclear membrane. Nature 516, 410-413.
    Koch, B.A., Jin, H., Tomko Jr., R.J., Yu, H.G., 2019. The anaphase-promoting complex regulates the degradation of the inner nuclear membrane protein Mps3. J. Cell Biol. 218, 839-854.
    Lafontaine, D.L.J., Riback, J.A., Bascetin, R., Brangwynne, C.P., 2021. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165-182.
    Latonen, L., 2011. Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that accumulate several key factors of neurodegenerative diseases and cancer. Bioessays 33, 386-395.
    Lee, S.J., Baserga, S.J., 1999. Imp3p and Imp4p, two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol. Cell Biol. 19, 5441-5452.
    Lerch-Gaggl, A., Haque, J., Li, J., Ning, G., Traktman, P., Duncan, S.A., 2002. Pescadillo is essential for nucleolar assembly, ribosome biogenesis, and mammalian cell proliferation. J. Biol. Chem. 277, 45347-45355.
    Lopez, D.J., Rodriguez, J.A., Banuelos, S., 2020. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. Biochim. Biophys. Acta. Protein Proteonomics 1868, 140532.
    Ma, Z., Zhu, P., Shi, H., Guo, L., Zhang, Q., Chen, Y., Chen, S., Zhang, Z., Peng, J., Chen, J., 2019. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259-263.
    Marcel, V., Vijayakumar, V., Fernandez-Cuesta, L., Hafsi, H., Sagne, C., Hautefeuille, A., Olivier, M., Hainaut, P., 2010. p53 regulates the transcription of its D133p53 isoform through specific response elements contained within the TP53 P2 internal promoter. Oncogene 29, 2691-2700.
    Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L., Westendorf, J.M., 1996. Identification of novel M phase phosphoproteins by expression cloning. Mol. Biol. Cell 7, 1455-1469.
    Mijaljica, D., Prescott, M., Devenish, R.J., 2012. A late form of nucleophagy in Saccharomyces cerevisiae. PLoS One 7, e40013.
    Miller, S.B., Mogk, A., Bukau, B., 2015. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427, 1564-1574.
    Mitchell, P., 2010. Rrp47 and the function of the Sas10/C1D domain. Biochem. Soc. Trans. 38, 1088-1092.
    Moretti, D., Del Bello, B., Cosci, E., Biagioli, M., Miracco, C., Maellaro, E., 2009. Novel variants of muscle calpain 3 identified in human melanoma cells:cisplatininduced changes in vitro and differential expression in melanocytic lesions. Carcinogenesis 30, 960-967.
    Okuda, M., 2002. The role of nucleophosmin in centrosome duplication. Oncogene 21, 6170-6174.
    Ono, Y., Ojima, K., Shinkai-Ouchi, F., Hata, S., Sorimachi, H., 2016. An eccentric calpain, CAPN3/p94/calpain-3. Biochimie 122, 169-187.
    Ono, Y., Ojima, K., Torii, F., Takaya, E., Doi, N., Nakagawa, K., Hata, S., Abe, K., Sorimachi, H., 2010. Skeletal muscle-specific calpain is an intracellular Na+-dependent protease. J. Biol. Chem. 285, 22986-22998.
    Ono, Y., Torii, F., Ojima, K., Doi, N., Yoshioka, K., Kawabata, Y., Labeit, D., Labeit, S., Suzuki, K., Abe, K., Maeda, T., Sorimachi, H., 2006. Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system. J. Biol. Chem. 281, 18519-18531.
    Papandreou, M.E., Tavernarakis, N., 2019. Nucleophagy:from homeostasis to disease. Cell Death Differ. 26, 630-639.
    Roberts, P., Moshitch-Moshkovitz, S., Kvam, E., O'Toole, E., Winey, M., Goldfarb, D.S., 2003. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 129-141.
    Sa-Moura, B., Kornprobst, M., Kharde, S., Ahmed, Y.L., Stier, G., Kunze, R., Sinning, I., Hurt, E., 2017. Mpp10 represents a platform for the interaction of multiple factors within the 90S pre-ribosome. PLoS One 12, e0183272.
    Scott, D.D., Oeffinger, M., 2016. Nucleolin and nucleophosmin:nucleolar proteins with multiple functions in DNA repair. Biochem. Cell. Biol. 94, 419-432.
    Smoyer, C.J., Smith, S.E., Gardner, J.M., McCroskey, S., Unruh, J.R., Jaspersen, S.L., 2019. Distribution of proteins atthe inner nuclearmembrane is regulated bythe Asi1 E3 ligase in Saccharomyces cerevisiae. Genetics 211, 1269-1282.
    Sorimachi, H., Imajoh-Ohmi, S., Emori, Y., Kawasaki, H., Ohno, S., Minami, Y., Suzuki, K., 1989. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J. Biol. Chem. 264, 20106-20111.
    Tai, E., Benchimol, S., 2009. TRIMming p53 for ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 106, 11431-11432.
    Tao, B., Lo, L.J., Peng, J., He, J., 2020. rDNA subtypes and their transcriptional expression in zebrafish at different developmental stages. Biochem. Biophys. Res. Commun. 529, 819-825.
    Tao, T., Shi, H., Guan, Y., Huang, D., Chen, Y., Lane, D.P., Chen, J., Peng, J., 2013. Def defines a conserved nucleolar pathway that leads p53 to proteasomeindependent degradation. Cell Res. 23, 620-634.
    Varshavsky, A., 2005. Regulated protein degradation. Trends Biochem. Sci. 30, 283-286.
    Wang, Y., Luo, Y., Hong, Y., Peng, J., Lo, L., 2012. Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish. J. Genet. Genom. 39, 451-462.
    Watanabe, N., Arai, H., Nishihara, Y., Taniguchi, M., Watanabe, N., Hunter, T., Osada, H., 2004. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl. Acad. Sci. U. S. A. 101, 4419-4424.
    Woolford Jr., J.L., Baserga, S.J., 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643-681.
    Zhang, Y.W., Otterness, D.M., Chiang, G.G., Xie, W., Liu, Y.C., Mercurio, F., Abraham, R.T., 2005. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol. Cell. 19, 607-618.
    Zhao, S., Chen, Y., Chen, F., Huang, D., Shi, H., Lo, L.J., Chen, J., Peng, J., 2019. Sas10 controls ribosome biogenesis by stabilizing Mpp10 and delivering the Mpp10-Imp3-Imp4 complex to nucleolus. Nucleic Acids Res. 47, 2996-3012.
    Zhu, Z., Chen, J., Xiong, J.W., Peng, J., 2014. Haploinsufficiency of Def activates p53-dependent TGFβ signalling and causes scar formation after partial hepatectomy. PLoS One 9, e96576.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (269) PDF downloads (47) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return