5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 10
Oct.  2021
Turn off MathJax
Article Contents

Inducible CRISPRa screen identifies putative enhancers

doi: 10.1016/j.jgg.2021.06.012
Funds:

2018KJ075 to T.L.), Open grant from the Chinese Academy of Medical Sciences (157-Z20-04 to X.W.). We also appreciate the support from Tianjin Postgraduate Research Innovation Project (2019YJSB117 to Z.D.

2019YJSS176 to Y.H.).

31900464 to T.L.), and the Natural Science Foundation of Tianjin Municipal Science and Technology Commission (18JCJQJC48200 to X.W.), Tianjin Education Commission (2020ZD13 to X.W.

We thank members of the Wu laboratory for discussions. This work was supported by the National key research and development program (2017YFA0504102 to X.W.), the National Natural Science Foundation of China (81772676, 31970579 to X.W.

  • Received Date: 2021-03-11
  • Revised Date: 2021-05-21
  • Accepted Date: 2021-06-07
  • Publish Date: 2021-07-15
  • Enhancers are critical cis-regulatory elements that regulate spatiotemporal gene expression and control cell fates. However, the identification of enhancers in native cellular contexts still remains a challenge. Here, we develop an inducible CRISPR activation (CRISPRa) system by transgenic expression of doxycycline (Dox)-inducible dCas9-VPR in mouse embryonic stem cells (iVPR ESC). With this line, a simple introduction of specific guide RNAs targeting promoters or enhancers allows us to realize the effect of CRISPRa in an inducible, reversible, and Dox concentration-dependent manner. Taking advantage of this system, we induce tiled CRISPRa across genomic regions (105 kilobases) surrounding T (Brachyury), one of the key mesodermal development regulator genes. Moreover, we identify several CRISPRa-responsive elements with chromatin features of putative enhancers, including a region the homologous sequence in which humans harbors a body height risk variant. Genetic deletion of this region in ESC does affect subsequent T gene activation and osteogenic differentiation. Therefore, our inducible CRISPRa ESC line provides a convenient platform for high-throughput screens of putative enhancers.
  • loading
  • Arnold, C.D., Gerlach, D., Stelzer, C., Boryn, L.M., Rath, M., Stark, A., 2013. Genomewide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074-1077.
    Banerji, J., Rusconi, S., Schaffner, W., 1981. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299-308.
    Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone, A., Tan, M., Swigut, T., Wysocka, J., 2014. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14, 838-853.
    Buenrostro, J.D., Wu, B., Chang, H.Y., Greenleaf, W.J., 2015. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9.
    Calo, E., Wysocka, J., 2013. Modification of enhancer chromatin: what, how, and why? Mol. Cell. 49, 825-837.
    Chavez, A., Scheiman, J., Vora, S., Pruitt, B.W., Tuttle, M., E, P.R.I., Lin, S., Kiani, S., Guzman, C.D., Wiegand, D.J., et al., 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326-328.
    Cruz-Molina, S., Respuela, P., Tebartz, C., Kolovos, P., Nikolic, M., Fueyo, R., van Ijcken, W.F.J., Grosveld, F., Frommolt, P., Bazzi, H., et al., 2017. PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell 20, 689-705. e689.
    Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y., Whitehead, E.H., Guimaraes, C., Panning, B., Ploegh, H.L., Bassik, M.C., et al., 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647-661.
    Guo, G., Yang, J., Nichols, J., Hall, J.S., Eyres, I., Mansfield, W., Smith, A., 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063-1069.
    Guo, J., Ma, D., Huang, R., Ming, J., Ye, M., Kee, K., Xie, Z., Na, J., 2017. An inducible CRISPR-on system for controllable gene activation in human pluripotent stem cells. Protein Cell 8, 379-393.
    Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, L.O., Van Calcar, S., Qu, C., Ching, K.A., et al., 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311-318.
    Herrmann, B.G., Kispert, A., 1994. The T genes in embryogenesis. Trends Genet. 10, 280-286.
    Iacovino, M., Bosnakovski, D., Fey, H., Rux, D., Bajwa, G., Mahen, E., Mitanoska, A., Xu, Z., Kyba, M., 2011. Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cell. 29, 1580-1588.
    Kawaguchi, J., 2006. Generation of osteoblasts and chondrocytes from embryonic stem cells. Methods Mol. Biol. 330, 135-148.
    Kichaev, G., Bhatia, G., Loh, P.R., Gazal, S., Burch, K., Freund, M.K., Schoech, A., Pasaniuc, B., Price, A.L., 2019. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65-75.
    Li, K., Liu, Y., Cao, H., Zhang, Y., Gu, Z., Liu, X., Yu, A., Kaphle, P., Dickerson, K.E., Ni, M., et al., 2020a. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 11, 485.
    Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., Wu, X., 2020b. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biol. 18, e3000749.
    Liu, Y., Yu, C., Daley, T.P., Wang, F., Cao, W.S., Bhate, S., Lin, X., Still 2nd, C., Liu, H., Zhao, D., et al., 2018. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23, 758-771. e758.
    Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., Hardin, A., Eckalbar, W.L., Vaisse, C., Ahituv, N., 2019. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363, eaau0629.
    Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al., 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-1195.
    Mazzoni, E.O., Mahony, S., Iacovino, M., Morrison, C.A., Mountoufaris, G., Closser, M., Whyte, W.A., Young, R.A., Kyba, M., Gifford, D.K., et al., 2011. Embryonic stem cell-based mapping of developmental transcriptional programs. Nat. Methods 8, 1056-1058.
    Naiche, L.A., Harrelson, Z., Kelly, R.G., Papaioannou, V.E., 2005. T-box genes in vertebrate development. Annu. Rev. Genet. 39, 219-239.
    Nakamura, M., Gao, Y., Dominguez, A.A., Qi, L.S., 2021. CRISPR technologies for precise epigenome editing. Nat. Cell Biol. 23, 11-22.
    Nichols, J., Smith, A., 2009. Naive and primed pluripotent states. Cell Stem Cell 4, 487-492.
    Ong, C.T., Corces, V.G., 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293.
    Papaioannou, V.E., 2014. The T-box gene family: emerging roles in development, stem cells and cancer. Development 141, 3819-3833.
    Pradeepa, M.M., Grimes, G.R., Kumar, Y., Olley, G., Taylor, G.C., Schneider, R., Bickmore, W.A., 2016. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681-686.
    Rickels, R., Shilatifard, A., 2018. Enhancer logic and mechanics in development and disease. Trends Cell Biol. 28, 608-630.
    Sanjana, N.E., Shalem, O., Zhang, F., 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783-784.
    Sanjana, N.E., Wright, J., Zheng, K., Shalem, O., Fontanillas, P., Joung, J., Cheng, C., Regev, A., Zhang, F., 2016. High-resolution interrogation of functional elements in the non-coding genome. Science 353, 1545-1549.
    Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., et al., 2012. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116-120.
    Shlyueva, D., Stampfel, G., Stark, A., 2014. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272-286.
    Simeonov, D.R., Gowen, B.G., Boontanrart, M., Roth, T.L., Gagnon, J.D., Mumbach, M.R., Satpathy, A.T., Lee, Y., Bray, N.L., Chan, A.Y., et al., 2017. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111-115.
    Spitz, F., Furlong, E.E., 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613-626.
    Stricker, S.H., Koferle, A., Beck, S., 2017. From profiles to function in epigenomics. Nat. Rev. Genet. 18, 51-66.
    Visel, A., Blow, M.J., Li, Z., Zhang, T., Akiyama, J.A., Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F., et al., 2009. Chip-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854-858.
    Wang, H.F., Warrier, T., Farran, C.A., Zheng, Z.H., Xing, Q.R., Fullwood, M.J., Zhang, L.F., Li, H., Xu, J., Lim, T.M., et al., 2020. Defining essential enhancers for pluripotent stem cells using a features-oriented CRISPR-cas9 screen. Cell Rep. 33, 108309.
    Weinberger, L., Ayyash, M., Novershtern, N., Hanna, J.H., 2016. Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat. Rev. Mol. Cell Biol. 17, 155-169.
    Wu, X., Bekker-Jensen, I.H., Christensen, J., Rasmussen, K.D., Sidoli, S., Qi, Y., Kong, Y., Wang, X., Cui, Y., Xiao, Z., et al., 2015. Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals. Cell Res. 25, 1205-1218.
    Wu, X., Johansen, J.V., Helin, K., 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell. 49, 1134-1146.
    Yang, J., Rajan, S.S., Friedrich, M.J., Lan, G., Zou, X., Ponstingl, H., Garyfallos, D.A., Liu, P., Bradley, A., Metzakopian, E., 2019. Genome-scale CRISPRa screen identifies novel factors for cellular reprogramming. Stem Cell Rep. 12, 757-771.
    Yu, Y., Al-Mansoori, L., Opas, M., 2015. Optimized osteogenic differentiation protocol from R1 mouse embryonic stem cells in vitro. Differentiation 89, 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads (15) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return