5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 9
Sep.  2021
Turn off MathJax
Article Contents

Microbiota-gut-brain axis in autism spectrum disorder

doi: 10.1016/j.jgg.2021.07.001
Funds:

This work was supported by grants from the Beijing Natural Science Foundation (JQ18020), the National Natural Science Foundation of China (32025009, 91951209, 31722031).

  • Received Date: 2021-05-10
  • Revised Date: 2021-06-27
  • Accepted Date: 2021-07-05
  • Publish Date: 2021-07-19
  • Extensive studies, largely during the past decade, identify the dynamic and bidirectional interaction between the bacteria resident in the intestines and their host brain along the "microbiota-gut-brain axis". This interaction modulates the development and function of the central nervous system and is implicated in neurological disorders. As a neurodevelopmental disorder, autism spectrum disorder (ASD) is considered a historically defect in the brain. With accumulating evidence showing how the microorganisms modulate neural activities, more and more research is focusing on the role of the gut microbiota in mitigating ASD symptoms and the underlying mechanisms. In this review, we describe the intricate and crucial pathways via which the gut microbiota communicates with the brain, the microbiota-gut-brain axis, and summarize the specific pathways that mediate the crosstalk of the gut microbiota to the brain in ASD.
  • loading
  • Adams, J.B., Johansen, L.J., Powell, L.D., Quig, D., Rubin, R.A., 2011. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11, 22.
    Ahmad, R., Sorrell, M.F., Batra, S.K., Dhawan, P., Singh, A.B., 2017. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol. 10, 307-317.
    Arrieta, M.C., Finlay, B.B., 2012. The commensal microbiota drives immune homeostasis. Front. Immunol. 3, 33.
    Association, A.P.,2013. Diagnostic and Statistical Manual of Mental Disorders. DSM-5® American Psychiatric Pub.
    Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337-341.
    Banks, W.A., 2005. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr. Pharmaceut. Des. 11, 973-984.
    Barrett, E., Ross, R.P., O'Toole, P.W., Fitzgerald, G.F., Stanton, C., 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411-417.
    Bauman, M.D., Iosif, A.M., Smith, S.E., Bregere, C., Amaral, D.G., Patterson, P.H., 2014. Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol. Psychiatr. 75, 332-341.
    Beattie, D.T., Smith, J.A., 2008. Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 377, 181-203.
    Bellosta, P., Soldano, A., 2019. Dissecting the genetics of autism spectrum disorders: a Drosophila perspective. Front. Physiol. 10, 987.
    Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L.G., Kundu, P., 2014. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158.
    Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., Cryan, J.F., 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U. S. A. 108, 16050-16055.
    Buffington, S.A., Dooling, S.W., Sgritta, M., Noecker, C., Murillo, O.D., Felice, D.F., Turnbaugh, P.J., Costa-Mattioli, M., 2021. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 184, 1740-1756. e1716.
    Chaidez, V., Hansen, R.L., Hertz-Picciotto, I., 2014. Gastrointestinal problems in children with autism, developmental delays or typical development. J. Autism Dev. Disord. 44, 1117-1127.
    Chen, K., Luan, X., Liu, Q., Wang, J., Chang, X., Snijders, A.M., Mao, J.H., Secombe, J., Dan, Z., Chen, J.H., 2019. Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25, 537-552.
    Choi, G.B., Yim, Y.S., Wong, H., Kim, S., Kim, H., Kim, S.V., Hoeffer, C.A., Littman, D.R., Huh, J.R., 2016. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933-939.
    Chugani, D.C., Muzik, O., Behen, M., Rothermel, R., Janisse, J.J., Lee, J., Chugani, H.T., 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 45, 287-295.
    Correa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T., Vinolo, M.A., 2016. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5, e73.
    Dalile, B., Van Oudenhove, L., Vervliet, B., Verbeke, K., 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461-478.
    De Vadder, F., Grasset, E., Manneras Holm, L., Karsenty, G., Macpherson, A.J., Olofsson, L.E., Backhed, F., 2018. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. U. S. A. 115, 6458-6463.
    Edmonson, C.A., Ziats, M.N., Rennert, O.M., 2016. A non-inflammatory role for microglia in autism spectrum disorders. Front. Neurol. 7, 9.
    Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965-977.
    Estes, M.L., McAllister, A.K., 2016. Maternal immune activation: implications for neuropsychiatric disorders. Science 353, 772-777.
    Fattorusso, A., Di Genova, L., Dell'Isola, G.B., Mencaroni, E., Esposito, S., 2019. Autism spectrum disorders and the gut microbiota. Nutrients 11, 521.
    Feng, Y., Wang, Y., Wang, P., Huang, Y., Wang, F., 2018. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell. Physiol. Biochem. 49, 190-205.
    Fulling, C., Dinan, T.G., Cryan, J.F., 2019. Gut microbe to brain signaling: what happens in vagus. Neuron 101, 998-1002.
    Fung, T.C., Olson, C.A., Hsiao, E.Y., 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145-155.
    Furness, J.B., Callaghan, B.P., Rivera, L.R., Cho, H.J., 2014. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817, 39-71.
    Gaspar, P., Cases, O., Maroteaux, L., 2003. The developmental role of serotonin: news from mouse molecular genetics. Nat. Rev. Neurosci. 4, 1002-1012.
    Goswami, C., Iwasaki, Y., Yada, T., 2018. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130-135.
    Guastella, A.J., Hickie, I.B., 2016. Oxytocin treatment, circuitry, and autism: a critical review of the literature placing oxytocin into the autism context. Biol. Psychiatr. 79, 234-242.
    Han, W., Tellez, L.A., Perkins, M.H., Perez, I.O., Qu, T., Ferreira, J., Ferreira, T.L., Quinn, D., Liu, Z.W., Gao, X.B., 2018. A neural circuit for gut-induced reward. Cell 175, 665-678.
    Hiippala, K., Kainulainen, V., Kalliomaki, M., Arkkila, P., Satokari, R., 2016. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front. Microbiol. 7, 1706.
    Horder, J., Petrinovic, M.M., Mendez, M.A., Bruns, A., Takumi, T., Spooren, W., Barker, G.J., Kunnecke, B., Murphy, D.G., 2018. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl. Psychiatry 8, 106.
    Hsiao, E.Y., McBride, S.W., Chow, J., Mazmanian, S.K., Patterson, P.H., 2012. Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc. Natl. Acad. Sci. U. S. A. 109, 12776-12781.
    Hsiao, E.Y., McBride, S.W., Hsien, S., Sharon, G., Hyde, E.R., McCue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451-1463.
    Huuskonen, J., Suuronen, T., Nuutinen, T., Kyrylenko, S., Salminen, A., 2004. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br. J. Pharmacol. 141, 874-880.
    Insel, T.R., 2010. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65, 768-779.
    II, Ivanov, Atarashi, K., Manel, N., Brodie, E.L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K.C., Santee, C.A., Lynch, S.V., 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485-498.
    Kaakoush, N.O., 2020. Sutterella species, IgA-degrading bacteria in ulcerative colitis. Trends Microbiol. 28, 519-522.
    Kelly, J.R., Minuto, C., Cryan, J.F., Clarke, G., Dinan, T.G., 2017. Cross talk: the microbiota and neurodevelopmental disorders. Front. Neurosci. 11, 490.
    Kim, K.S., 2008. Mechanisms of microbial traversal of the blood-brain barrier. Nat. Rev. Microbiol. 6, 625-634.
    Kim, S., Kim, H., Yim, Y.S., Ha, S., Atarashi, K., Tan, T.G., Longman, R.S., Honda, K., Littman, D.R., Choi, G.B., 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528-532.
    Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A., Tsujimoto, G., 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U. S. A. 108, 8030-8035.
    Kohls, G., Schulte-Ruther, M., Nehrkorn, B., Muller, K., Fink, G.R., Kamp-Becker, I., Herpertz-Dahlmann, B., Schultz, R.T., Konrad, K., 2013. Reward system dysfunction in autism spectrum disorders. Soc. Cognit. Affect Neurosci. 8, 565-572.
    Koyama, R., Ikegaya, Y., 2015. Microglia in the pathogenesis of autism spectrum disorders. Neurosci. Res. 100, 1-5.
    Kratsman, N., Getselter, D., Elliott, E., 2016. Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology 102, 136-145.
    Lee, R.H., Mills, E.A., Schwartz, N., Bell, M.R., Deeg, K.E., Ruthazer, E.S., Marsh-Armstrong, N., Aizenman, C.D., 2010. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system. Neural Dev. 5, 2.
    Lenz, K.M., Nelson, L.H., 2018. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9, 698.
    Li, Q., Han, Y., Dy, A.B.C., Hagerman, R.J., 2017. The gut microbiota and autism spectrum disorders. Front. Cell. Neurosci. 11, 120.
    Liao, X., Yang, J., Wang, H., Li, Y., 2020. Microglia mediated neuroinflammation in autism spectrum disorder. J. Psychiatr. Res. 130, 167-176.
    Liu, S., Li, E., Sun, Z., Fu, D., Duan, G., Jiang, M., Yu, Y., Mei, L., Yang, P., Tang, Y., 2019. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep. 9, 287.
    Liu, Z., Li, X., Zhang, J.T., Cai, Y.J., Cheng, T.L., Cheng, C., Wang, Y., Zhang, C.C., Nie, Y.H., Chen, Z.F., 2016. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98-102.
    MacFabe, D.F., Cain, N.E., Boon, F., Ossenkopp, K.P., Cain, D.P., 2011. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav. Brain Res. 217, 47-54.
    Maenner, M.J., Shaw, K.A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., Christensen, D.L., Wiggins, L.D., Pettygrove, S., Andrews, J.G., 2020. Prevalence of autism spectrum disorder among children aged 8 years- autism and developmental disabilities monitoring network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 69, 1-12.
    Marotta, R., Risoleo, M.C., Messina, G., Parisi, L., Carotenuto, M., Vetri, L., Roccella, M., The neurochemistry of autism. Brain Sci.10, 163.
    Mazzoli, R., Pessione, E., 2016. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front. Microbiol. 7, 1934.
    Meshalkina, D.A., M, N.K., E, V.K., Collier, A.D., Echevarria, D.J., Abreu, M.S., Barcellos, L.J.G., Song, C., Warnick, J.E., Kyzar, E.J., 2018. Zebrafish models of autism spectrum disorder. Exp. Neurol. 299, 207-216.
    Mohammad-Zadeh, L.F., Moses, L., Gwaltney-Brant, S.M., 2008. Serotonin: a review. J. Vet. Pharmacol. Therapeut. 31, 187-199.
    Morais, L.H., Schreiber, H.L.t., Mazmanian, S.K., 2021. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241-255.
    O'Mahony, L., McCarthy, J., Kelly, P., Hurley, G., Luo, F., Chen, K., O'Sullivan, G.C., Kiely, B., Collins, J.K., Shanahan, F., 2005. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541-551.
    Obata, Y., Castano, A., Boeing, S., Bon-Frauches, A.C., Fung, C., Fallesen, T., de Aguero, M.G., Yilmaz, B., Lopes, R., Huseynova, A., 2020. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284-289.
    Oldendorf, W.H., 1973. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 224, 1450-1453.
    Otaru, N., Ye, K., Mujezinovic, D., Berchtold, L., Constancias, F., Cornejo, F.A., Krzystek, A., de Wouters, T., Braegger, C., Lacroix, C., 2021. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front. Microbiol. 12, 860.
    Patusco, R., Ziegler, J., 2018. Role of probiotics in managing gastrointestinal dysfunction in children with autism spectrum disorder: an update for practitioners. Adv. Nutr. 9, 637-650.
    Powell, N., Walker, M.M., Talley, N.J., 2017. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143-159.
    Puts, N.A.J., Wodka, E.L., Harris, A.D., Crocetti, D., Tommerdahl, M., Mostofsky, S.H., Edden, R.A.E., 2017. Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 10, 608-619.
    Rao, M., Gershon, M.D., 2016. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517-528.
    Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., Chao, C.C., Patel, B., Yan, R., Blain, M., 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586-597.
    Sgritta, M., Dooling, S.W., Buffington, S.A., Momin, E.N., Francis, M.B., Britton, R.A., Costa-Mattioli, M., 2019. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246-259.
    Shackley, M., Ma, Y., Tate, E.W., Brown, A.J.H., Frost, G., Hanyaloglu, A.C., 2020. Short chain fatty acids enhance expression and activity of the umami taste receptor in enteroendocrine cells via a Gαi/o pathway. Front. Nutr. 7, 568991.
    Sharon, G., Cruz, N.J., Kang, D.W., Gandal, M.J., Wang, B., Kim, Y.M., Zink, E.M., Casey, C.P., Taylor, B.C., Lane, C.J., 2019. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600-1618.
    Sherwin, E., Bordenstein, S.R., Quinn, J.L., Dinan, T.G., Cryan, J.F., Microbiota and the social brain. Science 366, eaar2016.
    Song, W.S., Nielson, B.R., Banks, K.P., Bradley, Y.C., 2009. Normal organ standard uptake values in carbon-11 acetate PET imaging. Nucl. Med. Commun. 30, 462-465.
    Spohn, S.N., Mawe, G.M., 2017. Non-conventional features of peripheral serotonin signalling- the gut and beyond. Nat. Rev. Gastroenterol. Hepatol. 14, 412-420.
    Strandwitz, P., Kim, K.H., Terekhova, D., Liu, J.K., Sharma, A., Levering, J., McDonald, D., Dietrich, D., Ramadhar, T.R., Lekbua, A., 2019. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396-403.
    Takanaga, H., Ohtsuki, S., Hosoya, K., Terasaki, T., 2001. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J. Cerebr. Blood Flow Metabol. 21, 1232-1239.
    Thion, M.S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., Blecher, R., Ulas, T., Squarzoni, P., Hoeffel, G., 2018. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500-516.
    van Hoorn, A., Carpenter, T., Oak, K., Laugharne, R., Ring, H., Shankar, R., 2019. Neuromodulation of autism spectrum disorders using vagal nerve stimulation. J. Clin. Neurosci. 63, 8-12.
    Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D.L., Harony-Nicolas, H., De Rubeis, S., Drapeau, E., Buxbaum, J.D., 2017. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol. 134, 537-566.
    Vijay, N., Morris, M.E., 2014. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharmaceut. Des. 20, 1487-1498.
    Vuong, H.E., Hsiao, E.Y., 2017. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatr. 81, 411-423.
    Vuong, H.E., Pronovost, G.N., Williams, D.W., Coley, E.J.L., Siegler, E.L., Qiu, A., Kazantsev, M., Wilson, C.J., Rendon, T., Hsiao, E.Y., 2020. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281-286.
    Waldecker, M., Kautenburger, T., Daumann, H., Busch, C., Schrenk, D., 2008. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J. Nutr. Biochem. 19, 587-593.
    Walsh, J.J., Christoffel, D.J., Heifets, B.D., Ben-Dor, G.A., Selimbeyoglu, A., Hung, L.W., Deisseroth, K., Malenka, R.C., 2018. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature 560, 589-594.
    Wang, I.K., Wu, Y.Y., Yang, Y.F., Ting, I.W., Lin, C.C., Yen, T.H., Chen, J.H., Wang, C.H., Huang, C.C., Lin, H.C., 2015. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 6, 423-430.
    Watson, K.K., Platt, M.L., 2012. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J. Neurodev. Disord. 4, 21.
    Wei, H., Chadman, K.K., McCloskey, D.P., Sheikh, A.M., Malik, M., Brown, W.T., Li, X., 2012. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim. Biophys. Acta 1822, 831-842.
    Wesemann, D.R., Portuguese, A.J., Meyers, R.M., Gallagher, M.P., Cluff-Jones, K., Magee, J.M., Panchakshari, R.A., Rodig, S.J., Kepler, T.B., Alt, F.W., 2013. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501, 112-115.
    Wong, C.C.Y., Smith, R.G., Hannon, E., Ramaswami, G., Parikshak, N.N., Assary, E., Troakes, C., Poschmann, J., Schalkwyk, L.C., Sun, W., 2019. Genome-wide DNA methylation profiling identifies convergent molecular signatures associated with idiopathic and syndromic autism in post-mortem human brain tissue. Hum. Mol. Genet. 28, 2201-2211.
    Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., Hsiao, E.Y., 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264-276.
    Yunes, R.A., Poluektova, E.U., Dyachkova, M.S., Klimina, K.M., Kovtun, A.S., Averina, O.V., Orlova, V.S., Danilenko, V.N., 2016. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42, 197-204.
    Yunes, R.A., Poluektova, E.U., Vasileva, E.V., Odorskaya, M.V., Marsova, M.V., Kovalev, G.I., Danilenko, V.N., 2020. A multi-strain potential probiotic formulation of GABA-producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with antidepressant effects. Probio. Antimicrob. Prot. 12, 973-979.
    Zhao, H., Jiang, Y.H., Zhang, Y.Q., 2018. Modeling autism in non-human primates: opportunities and challenges. Autism Res. 11, 686-694.
    Zheng, D., Liwinski, T., Elinav, E., 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492-506.
    Zhou, Y., Sharma, J., Ke, Q., Landman, R., Yuan, J., Chen, H., Hayden, D.S., , Jiang, M., Menegas, W., 2019. Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570, 326-331.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (259) PDF downloads (31) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return