5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

Essential role of Msx1 in regulating anterior-posterior patterning of the secondary palate in mice

doi: 10.1016/j.jgg.2021.07.006
Funds:

We thank Ryan Chastain-Gross and Michal Bell, Ph.D, from Liwen Bianji, Edanz Group China, for editing the English text of a draft of this manuscript. This work was supported by grants from the National Natural Scientific Foundation of China (81771028 and 317771593), Medical Health Science and Technology Project of Zhejiang (2021KY891) and Medical Health Science and Technology Major Project of Hangzhou (Z20200046).

  • Received Date: 2021-04-07
  • Revised Date: 2021-06-24
  • Accepted Date: 2021-07-07
  • Publish Date: 2021-07-31
  • Development of the secondary palate displays molecular heterogeneity along the anterior-posterior axis; however, the underlying molecular mechanism remains largely unknown. MSX1 is an anteriorly expressed transcription repressor required for palate development. Here, we investigate the role of Msx1 in regional patterning of the secondary palate. The Wnt1-Cre-mediated expression of Msx1 (RosaMsx1) throughout the palatal mesenchyme leads to cleft palate in mice, associated with aberrant cell proliferation and cell death. Osteogenic patterning of the hard palate in RosaMsx1 mice is severely impaired, as revealed by a marked reduction in palatine bone formation and decreased expression of the osteogenic regulator Sp7. Overexpression and knockout of Msx1 in mice show that the transcription repressor promotes the expression of the anterior palate-specific Alx1 but represses the expression of the medial-posterior palate genes Barx1, Meox2, and Tbx22. Furthermore, Tbx22 constitutes a direct Msx1 target gene in the secondary palate, suggesting that Msx1 can directly repress the expression of medial-posterior specific genes. Finally, we determine that Sp7 is downstream of Tbx22 in palatal mesenchymal cells, suggesting that a Msx1/Tbx22/Sp7 axis participates in the regulation of palate development. Our findings unveil a novel role for Msx1 in regulating the anterior-posterior growth and patterning of the secondary palate.
  • loading
  • Braybrook, C., Doudney, K., Marcano, A.C., Arnason, A., Bjornsson, A., Patton, M.A., Goodfellow, P.J., Moore, G.E.,Stanier, P., 2001. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat. Genet. 29, 179-183.
    Bush, J.O.,Jiang, R., 2012. Palatogenesis:Morphogenetic and molecular mechanisms of secondary palate development. Development 139, 231-243.
    Bush, J.O.,Soriano, P., 2010. Ephrin-B1 forward signaling regulates craniofacial morphogenesis by controlling cell proliferation across Eph-ephrin boundaries. Genes Dev. 24, 2068-2080.
    Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R.,Ma'ayan, A., 2013. Enrichr:Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128.
    Chishti, M.S., Muhammad, D., Haider, M.,Ahmad, W., 2006. A novel missense mutation in MSX1 underlies autosomal recessive oligodontia with associated dental anomalies in Pakistani families. J. Hum. Genet. 51, 872-878.
    Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L.,Rice, P.M., 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38, 1767-1771.
    Dai, J., Xu, C., Wang, G., Liang, Y., Wan, T., Zhang, Y., Xu, X., Yu, L., Che, Z., Han, Q., et al., 2018. Novel TBX22 mutations in Chinese nonsyndromic cleft lip/palate families. J. Genet. 97, 411-417.
    Fuchs, A., Inthal, A., Herrmann, D., Cheng, S., Nakatomi, M., Peters, H.,Neubuser, A., 2010. Regulation of TBX22 during facial and palatal development. Dev. Dyn. 239, 2860-2874.
    Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S., et al., 2005. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132-33140.
    He, F., Xiong, W., Yu, X., Espinoza-Lewis, R., Liu, C., Gu, S., Nishita, M., Suzuki, K., Yamada, G., Minami, Y., et al., 2008. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 135, 3871-3879.
    Hilliard, S.A., Yu, L., Gu, S., Zhang, Z.,Chen, Y.P., 2005. Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J. Anat. 207, 655-667.
    Howe, L.J., Lee, M.K., Sharp, G.C., Davey Smith, G., St Pourcain, B., Shaffer, J.R., Ludwig, K.U., Mangold, E., Marazita, M.L., Feingold, E., et al., 2018. Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology. PLoS Genet. 14, e1007501.
    Kantaputra, P.N., Paramee, M., Kaewkhampa, A., Hoshino, A., Lees, M., McEntagart, M., Masrour, N., Moore, G.E., Pauws, E.,Stanier, P., 2011. Cleft lip with cleft palate, ankyloglossia, and hypodontia are associated with TBX22 mutations. J. Dent. Res. 90, 450-455.
    Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al., 1997. Targeted disruption of cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.
    Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al., 2016. Enrichr:A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90-97.
    Lace, B., Vasiljeva, I., Dundure, I., Barkane, B., Akota, I.,Krumina, A., 2006. Mutation analysis of the msx1 gene exons and intron in patients with nonsyndromic cleft lip and palate. Stomatologija 8, 21-24.
    Langmead, B.,Salzberg, S.L., 2012. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357-359.
    Li, B.,Dewey, C.N., 2011. Rsem:Accurate transcript quantification from rna-seq data with or without a reference genome. BMC Bioinformatics 12, 323.
    Li, J., Rodriguez, G., Han, X., Janeckova, E., Kahng, S., Song, B.,Chai, Y., 2019. Regulatory mechanisms of soft palate development and malformations. J. Dent. Res. 98, 959-967.
    Liang, J., Liang, L., Ouyang, K., Li, Z.,Yi, X., 2017. Malat1 induces tongue cancer cells' emt and inhibits apoptosis through wnt/beta-catenin signaling pathway. J. Oral Pathol. Med. 46, 98-105.
    Liang, J., Zhu, L., Meng, L., Chen, D.,Bian, Z., 2012. Novel nonsense mutation in msx1 causes tooth agenesis with cleft lip in a chinese family. Eur. J. Oral Sci. 120, 278-282.
    Liu, W., Lan, Y., Pauws, E., Meester-Smoor, M.A., Stanier, P., Zwarthoff, E.C.,Jiang, R., 2008. The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice. Development 135, 3959-3968.
    Liu, Y., Wang, M., Zhao, W., Yuan, X., Yang, X., Li, Y., Qiu, M., Zhu, X.J.,Zhang, Z., 2015. Gpr177-mediated Wnt signaling is required for secondary palate development. J. Dent. Res. 94, 961-967.
    Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R.,de Crombrugghe, B., 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29.
    Nakatomi, M., Ludwig, K.U., Knapp, M., Kist, R., Lisgo, S., Ohshima, H., Mangold, E.,Peters, H., 2020. Msx1 deficiency interacts with hypoxia and induces a morphogenetic regulation during mouse lip development. Development 147.
    Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al., 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.
    Pantalacci, S., Prochazka, J., Martin, A., Rothova, M., Lambert, A., Bernard, L., Charles, C., Viriot, L., Peterkova, R.,Laudet, V., 2008. Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development. BMC Dev. Biol. 8, 116.
    Pauws, E., Hoshino, A., Bentley, L., Prajapati, S., Keller, C., Hammond, P., Martinez-Barbera, J.P., Moore, G.E.,Stanier, P., 2009. TBX22null mice have a submucous cleft palate due to reduced palatal bone formation and also display ankyloglossia and choanal atresia phenotypes. Hum. Mol. Genet. 18, 4171-4179.
    Potter, A.S.,Potter, S.S., 2015. Molecular anatomy of palate development. PLoS One 10, e0132662.
    Satokata, I.,Maas, R., 1994. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 6, 348-356.
    Smith, T.M., Lozanoff, S., Iyyanar, P.P.,Nazarali, A.J., 2012. Molecular signaling along the anterior-posterior axis of early palate development. Front. Physiol. 3, 488.
    Stanier, P.,Moore, G.E., 2004. Genetics of cleft lip and palate:Syndromic genes contribute to the incidence of non-syndromic clefts. Hum. Mol. Genet. 13 Spec No 1, R73-81.
    Suphapeetiporn, K., Tongkobpetch, S., Siriwan, P.,Shotelersuk, V., 2007. TBX22 mutations are a frequent cause of non-syndromic cleft palate in the Thai population. Clin. Genet. 72, 478-483.
    Tissier-Seta, J.P., Mucchielli, M.L., Mark, M., Mattei, M.G., Goridis, C.,Brunet, J.F., 1995. Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech. Dev. 51, 3-15.
    Uz, E., Alanay, Y., Aktas, D., Vargel, I., Gucer, S., Tuncbilek, G., von Eggeling, F., Yilmaz, E., Deren, O., Posorski, N., et al., 2010. Disruption of ALX1 causes extreme microphthalmia and severe facial clefting:Expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. Am. J. Hum. Genet. 86, 789-796.
    Vastardis, H., Karimbux, N., Guthua, S.W., Seidman, J.G.,Seidman, C.E., 1996. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat. Genet. 13, 417-421.
    Xiong, Y., Fang, Y., Qian, Y., Liu, Y., Yang, X., Huang, H., Huang, H., Li, Y., Zhang, X., Zhang, Z., et al., 2019. Wnt production in dental epithelium is crucial for tooth differentiation. J. Dent. Res. 98, 580-588.
    Xu, J., Wang, L., Li, H., Yang, T., Zhang, Y., Hu, T., Huang, Z.,Chen, Y., 2019. Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice. J. Biol. Chem. 294, 18294-18305.
    Zhang, Z., Song, Y., Zhao, X., Zhang, X., Fermin, C.,Chen, Y., 2002. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 129, 4135-4146.
    Zhu, X.J., Fang, Y., Xiong, Y., Wang, M., Yang, X., Li, Y., Zhang, X., Dai, Z.M., Qiu, M., Zhang, Z., et al., 2018. Disruption of Wnt production in Shh lineage causes bone malformation in mice, mimicking human Malik-Percin-type syndactyly. FEBS Lett. 592, 356-368.
    Zhu, X.J., Yuan, X., Wang, M., Fang, Y., Liu, Y., Zhang, X., Yang, X., Li, Y., Li, J., Li, F., et al., 2017. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J. Biol. Chem. 292, 9409-9419.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (165) PDF downloads (10) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return