5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 12
Dec.  2021
Turn off MathJax
Article Contents

Two zinc-finger proteins control the initiation and elongation of long stalk trichomes in tomato

doi: 10.1016/j.jgg.2021.09.001
Funds:

This work was supported by the National Key Research and Development Program of China (2018YFD1000801), National Natural Science Foundation of China (32002050) and the Science Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

  • Received Date: 2021-09-07
  • Revised Date: 2021-09-11
  • Accepted Date: 2021-09-13
  • Publish Date: 2021-12-20
  • Plant glandular trichomes are epidermal secretory structures that are important for plant resistance to pests. Although several regulatory genes have been characterized in trichome development, the molecular mechanisms conferring glandular trichome morphogenesis are unclear. We observed the differences in trichomes in cultivated tomato cv. ‘Moneymaker’ (MM) and the wild species Solanum pimpinellifolium PI365967 (PP), and used a recombinant inbred line (RIL) population to identify the genes that control trichome development in tomato. We found that the genomic variations in two genes, HAIR (H) and SPARSE HAIR (SH), contribute to the trichome differences between MM and PP. H and SH encode two paralogous C2H2 zinc-finger proteins that function redundantly in regulating trichome formation. Loss-of-function h/sh double mutants exhibited a significantly decreased number of Type I trichomes and complete loss of long stalk trichomes. Molecular and genetic analyses further indicate that H and SH act upstream of ZFP5. Overexpression of ZFP5 partially restored the trichome defects in NIL-hPPshPP. Moreover, H and SH expression is induced by high temperatures, and their mutations inhibit the elongation of trichomes that reduce the plant repellent to whiteflies. Our findings confirm that H and SH are two vital transcription factors controlling initiation and elongation of Type I and III multicellular trichomes in tomato.
  • loading
  • Bennewitz, S., Bergau, N., Tissier, A., 2018. QTL mapping of the shape of type VI glandular trichomes in tomato. Front. Plant Sci. 9, 1421.
    Bergau, N., Bennewitz, S., Syrowatka, F., Hause, G., Tissier, A., 2015. The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol. 15, 289.
    Besser, K., Harper, A., Welsby, N., Schauvinhold, I., Slocombe, S., Li, Y., Dixon, R.A., Broun, P., 2009. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species. Plant Physiol. 149, 499-514.
    Bleeker, P.M., Diergaarde, P.J., Ament, K., Guerra, J., Weidner, M., Schutz, S., de Both, M.T., Haring, M.A., Schuurink, R.C., 2009. The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol. 151, 925-935.
    Brockington, S.F., Alvarez-Fernandez, R., Landis, J.B., Alcorn, K., Walker, R.H., Thomas, M.M., Hileman, L.C., Glover, B.J., 2013. Evolutionary analysis of the mixta gene family highlights potential targets for the study of cellular differentiation. Mol. Biol. Evol. 30, 526-540.
    Bruckner, K., Bozic, D., Manzano, D., Papaefthimiou, D., Pateraki, I., Scheler, U., Ferrer, A., de Vos, R.C., Kanellis, A.K., Tissier, A., 2014. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes. Phytochemistry 101, 52-64.
    Chalvin, C., Drevensek, S., Dron, M., Bendahmane, A., Boualem, A., 2020. Genetic control of glandular trichome development. Trends Plant Sci. 25, 477-487.
    Chang, J., Yu, T., Yang, Q., Li, C., Xiong, C., Gao, S., Xie, Q., Zheng, F., Li, H., Tian, Z., et al., 2018. Hair, encoding a single C2H2 zinc-finger protein, regulates multicellular trichome formation in tomato. Plant J. 96, 90-102.
    Chen, Y., Su, D., Li, J., Ying, S., Deng, H., He, X., Zhu, Y., Li, Y., Chen, Y., Pirrello, J., et al., 2020. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. J. Exp. Bot. 71, 3450-3462.
    Deng, L., Wang, H., Sun, C., Li, Q., Jiang, H., Du, M., Li, C.B., Li, C., 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genom. 45, 51-54.
    Deng, W., Yang, Y., Ren, Z., Audran-Delalande, C., Mila, I., Wang, X., Song, H., Hu, Y., Bouzayen, M., Li, Z., 2012. The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytol. 194, 379-390.
    Dias, D.M., Resende, J.T.V., Marodin, J.C., Matos, R., Lustosa, I.F., Resende, N.C.V., 2016. Acyl sugars and whitefly (Bemisia tabaci) resistance in segregating populations of tomato genotypes. Genet. Mol. Res. 15 gmr7788.
    Dimock, M.B., Kennedy, G.G., 1983. The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol. Exp. Appl. 33, 263-268.
    Ewas, M., Gao, Y., Alia, F., Nishawy M., E., Shahzad, R., Subthain, H., Amar, M., Martind, C., Luo, J., 2017. RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato. Sci. Bull. 62, 476-485.
    Firdaus, S., van Heusden, A.W., Hidayati, N., Supena, E.D.J., Visser, R.G.F., Vosman, B., 2012. Resistance to bemisia tabaci in tomato wild relatives. Euphytica 187, 31-45.
    Galdon-Armero, J., Arce-Rodriguez, L., Downie, M., Li, J., Martin, C., 2020. A scanning electron micrograph-based resource for identification of loci involved in epidermal development in tomato. Plant Cell 32, 1414-1433.
    Gan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H., Broun, P., 2006. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18, 1383-1395.
    Gan, Y., Liu, C., Yu, H., Broun, P., 2007. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134, 2073-2081.
    Gao, S., Gao, Y., Xiong, C., Yu, G., Chang, J., Yang, Q., Yang, C., Ye, Z., 2017. The tomato B-type cyclin gene, SlCycB2, plays key roles in reproductive organ development, trichome initiation, terpenoids biosynthesis and Prodenia litura defense. Plant Sci. 262, 103-114.
    Glas, J.J., Schimmel, B.C., Alba, J.M., Escobar-Bravo, R., Schuurink, R.C., Kant, M.R., 2012. Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int. J. Mol. Sci. 13, 17077-17103.
    Gong, Z., Luo, Y., Zhang, W., Jian, W., Zhang, L., Gao, X., Hu, X., Yuan, Y., Wu, M., Xu, X., et al., 2021. A SlMYB75-centred transcriptional cascade regulates trichome formation and sesquiterpene accumulation in tomato. J. Exp. Bot. 72, 3806-3820.
    Hua, B., Chang, J., Wu, M., Xu, Z., Zhang, F., Yang, M., Xu, H., Wang, L.J., Chen, X.Y., Wu, S., 2021. Mediation of JA signalling in glandular trichomes by the woolly/SlMYC1 regulatory module improves pest resistance in tomato. Plant Biotechnol. J. 19, 375-393.
    Hulskamp, M., Misra, S., Jurgens, G., 1994. Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555-566.
    Ishida, T., Kurata, T., Okada, K., Wada, T., 2008. A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 59, 365-386.
    Kang, J.H., McRoberts, J., Shi, F., Moreno, J.E., Jones, A.D., Howe, G.A., 2014. The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol. 164, 1161-1174.
    Kim, J., Kang, K., Gonzales-Vigil, E., Shi, F., Jones, A.D., Barry, C.S., Last, R.L., 2012. Striking natural diversity in glandular trichome acylsugar composition is shaped by variation at the Acyltransferase2 locus in the wild tomato Solanum habrochaites. Plant Physiol. 160, 1854-1870.
    Lange, B.M., 2015. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu. Rev. Plant Biol. 66, 139-159.
    Leckie, B.M., De Jong, D.M., Mutschler, M.A., 2012. Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silverleaf whiteflies. Mol. Breed. 30, 1621-1634.
    Leong, B.J., Lybrand, D.B., Lou, Y.R., Fan, P., Schilmiller, A.L., Last, R.L., 2019. Evolution of metabolic novelty: a trichome-expressed invertase creates specialized metabolic diversity in wild tomato. Sci. Adv. 5, eaaw3754.
    Li, C., Wang, Z., Jones, A.D., 2014. Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 406, 171-182.
    Liu, Y., Liu, D., Hu, R., Hua, C., Ali, I., Zhang, A., Liu, B., Wu, M., Huang, L., Gan, Y., 2017. AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochem. Biophys. Res. Commun. 483, 209-215.
    Marks, M.D., 1997. Molecular genetic analysis of trichome development in Arabidopsis. Annu. Rev. Plant Physiol. 48, 137-163.
    McDowell, E.T., Kapteyn, J., Schmidt, A., Li, C., Kang, J.H., Descour, A., Shi, F., Larson, M., Schilmiller, A., An, L., et al., 2011. Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol. 155, 524-539.
    Morohashi, K., Grotewold, E., 2009. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet. 5, e1000396.
    Muigai, S.G., Bassett, M.J., Schuster, D.J., Scott, J.W., 2003. Greenhouse and field screening of wild lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31, 27-38.
    Nadakuduti, S.S., Pollard, M., Kosma, D.K., Allen Jr., C., Ohlrogge, J.B., Barry, C.S., 2012. Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol. 159, 945-960.
    Nakashima, T., Wada, H., Morita, S., Erra-Balsells, R., Hiraoka, K., Nonami, H., 2016. Single-Cell metabolite profiling of stalk and glandular cells of intact trichomes with internal electrode capillary pressure probe electrospray ionization mass spectrometry. Anal. Chem. 88, 3049-3057.
    Payne, T., Clement, J., Arnold, D., Lloyd, A., 1999. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126, 671-682.
    Pesch, M., Hulskamp, M., 2009. One, two, three... models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 12, 587-592.
    Rakha, M., Bouba, N., Ramasamy, S., Regnard, J., Hanson, P., 2017a. Evaluation of wild tomato accessions (Solanum spp.) for resistance to two-spotted spider mite (Tetranychus urticae Koch) based on trichome type and acylsugar content. Genet. Resour. Crop Evol. 64, 1011-1022.
    Rakha, M., Zekeya, N., Sevgan, S., Musembi, M., Ramasamy, S., Hanson, P., 2017b. Screening recently identified whitefly/spider mite-resistant wild tomato accessions for resistance to Tuta absoluta. Plant Breed. 136, 562-568.
    Ramsay, N.A., Glover, B.J., 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 10, 63-70.
    Schilmiller, A.L., Schauvinhold, I., Larson, M., Xu, R., Charbonneau, A.L., Schmidt, A., Wilkerson, C., Last, R.L., Pichersky, E., 2009. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Nat. Acad. Sci. U. S. A. 106, 10865-10870.
    Schilmiller, A., Shi, F., Kim, J., Charbonneau, A.L., Holmes, D., Daniel Jones, A., Last, R.L., 2010. Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J. 62, 391-403.
    Schmidt, A., Li, C., Shi, F., Jones, A.D., Pichersky, E., 2011. Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3'/5'-and 7/4'-myricetin O-methyltransferases. Plant Physiol. 155, 1999-2009.
    Shi, P., Fu, X., Shen, Q., Liu, M., Pan, Q., Tang, Y., Jiang, W., Lv, Z., Yan, T., Ma, Y., Chen, M., Hao, X., Liu, P., Li, L., Sun, X., Tang, K., 2018. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol. 217, 261-276.
    Simmons, A.T., McGrath, D., Gurr, G.M., 2005. Trichome characteristics of F1 Lycopersicon esculentum×L. cheesmanii f. minor and L. esculentum×L. pennellii hybrids and effects on Myzus persicae. Euphytica 144, 313-320.
    Smeda, J.R., Schilmiller, A.L., Anderson, T., Ben-Mahmoud, S., Ullman, D.E., Chappell, T.M., Kessler, A., Mutschler, M.A., 2017. Combination of acylglucose qtl reveals additive and epistatic genetic interactions and impacts insect oviposition and virus infection. Mol. Breed. 38, 3.
    Sun, L., Zhang, A., Zhou, Z., Zhao, Y., Yan, A., Bao, S., Yu, H., Gan, Y., 2015. GLABROUS INFLORESCENCE STEMS3 (GIS3) regulates trichome initiation and development in Arabidopsis. New Phytol. 206, 220-230.
    Szymanski, D.B., Lloyd, A.M., Marks, M.D., 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 5, 214-219.
    Toscano, L.C., Boiça, J.A.L., Maruyama, W.I., 2002. Nonpreference of whitefly for oviposition in tomato genotypes. Sci. Agric. 59, 677-681.
    Weinblum, N., Cna'ani, A., Yaakov, B., Sadeh, A., Avraham, L., Opatovsky, I., Tzin, V., 2021. Tomato cultivars resistant or susceptible to spider mites differ in their biosynthesis and metabolic profile of the monoterpenoid pathway. Front. Plant Sci. 12, 630155.
    Xin, X.D., Li, X.W., Zhu, J.K., Liu, X.B., Chu, Z.H., Shen, J.L., Wu, C.Y., 2021. OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J. Genet. Genomics 48, 485-496.
    Xu, J., van Herwijnen, Z.O., Drager, D.B., Sui, C., Haring, M.A., Schuurink, R.C., 2018. SlMYC1 regulates Type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell 30, 2988-3005.
    Yang, C.X., Li, H., Zhang, J., Luo, Z., Gong, P., Zhang, C., Li, J., Wang, T., Zhang, Y., Lu, Y., et al., 2011. A regulatory gene induces trichome formation and embryo lethality in tomato. Proc. Natl. Acad. Sci. U. S. A. 108, 11836-11841.
    Yuan, Y., Xu, X., Luo, Y., Gong, Z., Hu, X., Wu, M., Liu, Y., Yan, F., Zhang, X., Zhang, W., et al., 2021. R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnol. J. 19, 138-152.
    Zhang, S., Xu, M., Qiu, Z., Wang, K., Du, Y., Gu, L., Cui, X., 2016. Spatiotemporal transcriptome provides insights into early fruit development of tomato (Solanum lycopersicum). Sci. Rep. 6, 23173.
    Zhang, S., Yu, H., Wang, K., Zheng, Z., Liu, L., Xu, M., Jiao, Z., Li, R., Liu, X., Li, J., et al., 2018. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. Plant J. 95, 312-323.
    Zhou, Z., An, L., Sun, L., Zhu, S., Xi, W., Broun, P., Yu, H., Gan, Y., 2011. Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis. Plant Physiol. 157, 673-682.
    Zhou, Z., Sun, L., Zhao, Y., An, L., Yan, A., Meng, X., Gan, Y., 2013. Zinc Finger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin and cytokinin signaling in Arabidopsis thaliana. New Phytol. 198, 699-708.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (400) PDF downloads (63) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return