Adula, K.P., Shorey, M., Chauhan, V., Nassman, K., Chen, S.F., Rolls, M.M., Sagasti, A., 2022. The MAP3Ks DLK and LZK direct diverse responses to axon damage in zebrafish peripheral neurons. J. Neurosci. 42, 6195-6210.
|
Awasthi, A., Ramachandran, B., Ahmed, S., Benito, E., Shinoda, Y., Nitzan, N., Heukamp, A., Rannio, S., Martens, H., Barth, J., et al., 2019. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science 363, eaav1483.
|
Bradbury, E.J., Burnside, E.R., 2019. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 10, 3879.
|
Canty, A.J., Huang, L., Jackson, J.S., Little, G.E., Knott, G., Maco, B., De Paola, V., 2013. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat. Commun. 4, 2038.
|
Carthew, R.W., Sontheimer, E.J., 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642-655.
|
Chen, M., Huang, R.C., Yang, L.Q., Ren, D.L., Hu, B., 2019. In vivo imaging of evoked calcium responses indicates the intrinsic axonal regenerative capacity of zebrafish. FASEB J. 33, 7721-7733.
|
Curcio, M., Bradke, F., 2018. Axon regeneration in the central nervous system: facing the challenges from the inside. Annu. Rev. Cell Dev. Biol. 34, 495-521.
|
Diekmann, H., Kalbhen, P., Fischer, D., 2015. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration. Front. Cell. Neurosci. 9, 251.
|
Diener, C., Keller, A., Meese, E., 2022. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 38, 613-626.
|
Dillon, C., Goda, Y., 2005. The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25-55.
|
Disner, G.R., Falcao, M.A.P., Lima, C., Lopes-Ferreira, M., 2021. In silico target prediction of overexpressed microRNAs from LPS-challenged zebrafish (Danio rerio) treated with the novel anti-Inflammatory peptide TnP. Int. J. Mol. Sci. 22, 7117.
|
Ebert, M.S., Neilson, J.R., Sharp, P.A., 2007. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721-726.
|
Egashira, Y., Kumade, A., Ojida, A., Ono, F., 2022. Spontaneously recycling synaptic vesicles constitute readily releasable vesicles in intact neuromuscular synapses. J. Neurosci. 42, 3523-3536.
|
Ferragut Cardoso, A.P., Banerjee, M., Nail, A.N., Lykoudi, A., States, J.C., 2021. miRNA dysregulation is an emerging modulator of genomic instability. Semin. Cancer Biol. 76, 120-131.
|
Ghibaudi, M., Boido, M., Vercelli, A., 2017. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog. Neurobiol. 158, 69-93.
|
Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., Schier, A.F., 2005. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-838.
|
Goda, Y., Stevens, C.F., 1998. Readily releasable pool size changes associated with long term depression. Proc. Natl. Acad. Sci. U. S. A. 95, 1283-1288.
|
Gonzalez-Forero, D., Montero, F., Garcia-Morales, V., Dominguez, G., Gomez-Perez, L., Garcia-Verdugo, J.M., Moreno-Lopez, B., 2012. Endogenous Rho-kinase signaling maintains synaptic strength by stabilizing the size of the readily releasable pool of synaptic vesicles. J. Neurosci. 32, 68-84.
|
Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., Bastiani, M., 2009. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802-806.
|
Hilbush, B.S., Morgan, J.I., 1994. A third synaptotagmin gene, Syt3, in the mouse. Proc. Natl. Acad. Sci. U. S. A. 91, 8195-8199.
|
Hilton, B.J., Husch, A., Schaffran, B., Lin, T.C., Burnside, E.R., Dupraz, S., Schelski, M., Kim, J., Muller, J.A., Schoch, S., et al., 2022. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51-69, e57.
|
Hu, B.B., Chen, M., Huang, R.C., Huang, Y.B., Xu, Y., Yin, W., Li, L., Hu, B., 2018. In vivo imaging of Mauthner axon regeneration, remyelination and synapses re-establishment after laser axotomy in zebrafish larvae. Exp. Neurol. 300, 67-73.
|
Huang, R., Chen, M., Yang, L., Wagle, M., Guo, S., Hu, B., 2017. MicroRNA-133b negatively regulates zebrafish single Mauthner-cell axon regeneration through targeting tppp3 in Vivo. Front. Mol. Neurosci. 10, 375.
|
Hui, E., Bai, J., Wang, P., Sugimori, M., Llinas, R.R., Chapman, E.R., 2005. Three distinct kinetic groupings of the synaptotagmin family: candidate sensors for rapid and delayed exocytosis. Proc. Natl. Acad. Sci. U. S. A. 102, 5210-5214.
|
Hung, I.C., Hsiao, Y.C., Sun, H.S., Chen, T.M., Lee, S.J., 2016. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genomics 17, 922.
|
Huntwork-Rodriguez, S., Wang, B., Watkins, T., Ghosh, A.S., Pozniak, C.D., Bustos, D., Newton, K., Kirkpatrick, D.S., Lewcock, J.W., 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J. Cell Biol. 202, 747-763.
|
Kaeser, P.S., Regehr, W.G., 2017. The readily releasable pool of synaptic vesicles. Curr. Opin. Neurobiol. 43, 63-70.
|
Kim, V.N., Han, J., Siomi, M.C., 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139.
|
Lau, K., Lai, K.P., Bao, J.Y., Zhang, N., Tse, A., Tong, A., Li, J.W., Lok, S., Kong, R.Y., Lui, W.Y., et al., 2014. Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS One 9, e110698.
|
Li, Y., He, X., Kawaguchi, R., Zhang, Y., Wang, Q., Monavarfeshani, A., Yang, Z., Chen, B., Shi, Z., Meng, H., et al., 2020. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613-618.
|
Liu, D., Yu, Y., Schachner, M., 2014. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish. Exp. Neurol. 261, 196-205.
|
Mahar, M., Cavalli, V., 2018. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323-337.
|
Martens, S., Kozlov, M.M., McMahon, H.T., 2007. How synaptotagmin promotes membrane fusion. Science 316, 1205-1208.
|
Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., Xu, B., Connolly, L., Kramvis, I., Sahin, M., et al., 2008. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963-966.
|
Quan, Y.Z., Wei, W., Ergin, V., Rameshbabu, A.P., Huang, M., Tian, C., Saladi, S.V., Indzhykulian, A.A., Chen, Z.Y., 2023. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc. Natl. Acad. Sci. U. S. A. 120, e2215253120.
|
Schmidt, J.T., Morgan, P., Dowell, N., Leu, B., 2002. Myosin light chain phosphorylation and growth cone motility. J. Neurobiol. 52, 175-188.
|
Smith, P.D., Sun, F., Park, K.K., Cai, B., Wang, C., Kuwako, K., Martinez-Carrasco, I., Connolly, L., He, Z., 2009. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64, 617-623.
|
Snider, W.D., Zhou, F.-Q., Zhong, J., Markus, A., 2002. Signaling the pathway to regeneration. Neuron 35, 13-16.
|
Soares, A.R., Pereira, P.M., Santos, B., Egas, C., Gomes, A.C., Arrais, J., Oliveira, J.L., Moura, G.R., Santos, M.A., 2009. Parallel DNA pyrosequencing unveils new zebrafish microRNAs. BMC Genomics 10, 195.
|
Srinivasan, G., Kim, J.H., von Gersdorff, H., 2008. The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J. Neurophysiol. 99, 1810-1824.
|
Strickland, I.T., Richards, L., Holmes, F.E., Wynick, D., Uney, J.B., Wong, L.F., 2011. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 6, e23423.
|
Sugita, S., Shin, O.H., Han, W., Lao, Y., Sudhof, T.C., 2002. Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J. 21, 270-280.
|
Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S.M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., et al., 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344-357.
|
Thomson, D.W., Dinger, M.E., 2016. Endogenous microRNA sponges: evidence and controversy. Nat. Rev. Genet. 17, 272-283.
|
Vaden, J.H., Banumurthy, G., Gusarevich, E.S., Overstreet-Wadiche, L., Wadiche, J.I., 2019. The readily-releasable pool dynamically regulates multivesicular release. Elife 8, e47434.
|
Vrljic, M., Strop, P., Ernst, J.A., Sutton, R.B., Chu, S., Brunger, A.T., 2010. Molecular mechanism of the synaptotagmin-SNARE interaction in Ca2+-triggered vesicle fusion. Nat. Struct. Mol. Biol. 17, 325-331.
|
Wei, C., Wang, B., Peng, D., Zhang, X., Li, Z., Luo, L., He, Y., Liang, H., Du, X., Li, S., et al., 2022. Pan-Cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. Front. Immunol. 13, 849592.
|
Weingarten, D.J., Shrestha, A., Juda-Nelson, K., Kissiwaa, S.A., Spruston, E., Jackman, S.L., 2022. Fast resupply of synaptic vesicles requires synaptotagmin-3. Nature 611, 320-325.
|
Wen, H., Linhoff, M.W., McGinley, M.J., Li, G.L., Corson, G.M., Mandel, G., Brehm, P., 2010. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 107, 13906-13911.
|
Wu, X., Hu, S., Kang, X., Wang, C., 2020. Synaptotagmins: beyond presynaptic neurotransmitter release. Neuroscientist 26, 9-15.
|
Xu, J., Mashimo, T., Sudhof, T.C., 2007. Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 567-581.
|
Yan, D., Wu, Z., Chisholm, A.D., Jin, Y., 2009. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138, 1005-1018.
|
Yoshimoto, T., Kittaka, M., Doan, A.A.P., Urata, R., Prideaux, M., Rojas, R.E., Harding, C.V., Henry Boom, W., Bonewald, L.F., Greenfield, E.M., et al., 2022. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat. Commun. 13, 6648.
|
Zhang, H., Kong, Q., Wang, J., Jiang, Y., Hua, H., 2020. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp. Hematol. Oncol. 9, 32.
|
Zhang, C., Chen, H., He, Q., Luo, Y., He, A., Tao, A., Yan, J., 2021. Fibrinogen/AKT/Microfilament axis promotes colitis by enhancing vascular permeability. Cell. Mol. Gastroenterol. Hepatol. 11, 683-696.
|
Zhao, C., Rao, J.-S., Duan, H., Hao, P., Shang, J., Fan, Y., Zhao, W., Gao, Y., Yang, Z., Sun, Y.E., et al., 2022. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar. Signal Transduct. Target. Ther. 7, 184.
|
Zhou, B., Yu, P., Lin, M.Y., Sun, T., Chen, Y., Sheng, Z.H., 2016. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103-119.
|