Almeida, G.D., Makumbi, D., Magorokosho, C., Nair, S., Borem, A., Ribaut, J.M., Banziger, M., Prasanna, B.M., Crossa, J., Babu, R., 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126, 583-600.
|
Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G.A., Fernandez, M.A., De Winne, N., De Jaeger, G., Dietrich, D., Bennett, M.J. et al., 2013. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931-941.
|
Ashraf, A., Rehman, O.U., Muzammil, S., Leon, J., Naz, A.A., Rasool, F., Ali, G.M., Zafar, Y., Khan, M.R., 2019. Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements. PLoS One 14, e0214145.
|
Aslam, M.M., Karanja, J.K., Dodd, I.C., Waseem, M., Weifeng, X., 2022. Rhizosheath: an adaptive root trait to improve plant tolerance to phosphorus and water deficits? Plant Cell Environ. 45, 2861-2874.
|
Blazquez, M.A., Nelson, D.C., Weijers, D., 2020. Evolution of plant hormone response pathways. Annu. Rev. Plant Biol. 71, 327-353.
|
Boyer, J.S., 1982. Plant productivity and environment. Science 218, 443-448.
|
Chang, J., Li, X., Fu, W., Wang, J., Yong, Y., Shi, H., Ding, Z., Kui, H., Gou, X., He, K., Li, J., 2019. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res. 29, 984-993.
|
Chen, Q., Hu, T., Li, X., Song, C.P., Zhu, J.K., Chen, L., Zhao, Y., 2022. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nat. Plants 8, 68-77.
|
Chimungu, J.G., Brown, K.M., Lynch, J.P., 2014a. Large root cortical cell size improves drought tolerance in maize. Plant Physiol. 166, 2166-2178.
|
Chimungu, J.G., Brown, K.M., Lynch, J.P., 2014b. Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol. 166, 1943-1955.
|
De Bauw, P., Mai, T.H., Schnepf, A., Merckx, R., Smolders, E., Vanderborght, J., 2020. A functional-structural model of upland rice root systems reveals the importance of laterals and growing root tips for phosphate uptake from wet and dry soils. Ann. Bot. 126, 789-806.
|
de Dorlodot, S., Forster, B., Pages, L., Price, A., Tuberosa, R., Draye, X., 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12, 474-481.
|
de la Fuente Canto, C., Simonin, M., King, E., Moulin, L., Bennett, M.J., Castrillo, G., Laplaze, L., 2020. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951-964.
|
de Vries, F.T., Griffiths, R.I., Knight, C.G., Nicolitch, O., Williams, A., 2020. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270-274.
|
Dietrich, D., 2018. Hydrotropism: how roots search for water. J. Exp. Bot. 69, 2759-2771.
|
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J.A., Boudolf, V., Bhosale, R., Antoni, R., Nguyen, T., Hiratsuka, S., Fujii, N., et al., 2017. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat. Plants 3, 17057.
|
Eapen, D., Barroso, M.L., Campos, M.E., Ponce, G., Corkidi, G., Dubrovsky, J.G., Cassab, G.I., 2003. A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol. 131, 536-546.
|
Fabregas, N., Lozano-Elena, F., Blasco-Escamez, D., Tohge, T., Martinez-Andujar, C., Albacete, A., Osorio, S., Bustamante, M., Riechmann, J.L., Nomura, T., Yokota, T., et al., 2018. Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat. Commun. 9, 4680.
|
Fahad, S., Bajwa, A.A., Nazir, U., Anjum, S.A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., et al., 2017. Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci., 8, 1147.
|
Feng, W., Lindner, H., Robbins, N.E., 2nd, Dinneny, J.R., 2016. Growing Out of Stress: the role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell 28, 1769-1782.
|
Feng, X., Jia, L., Cai, Y., Guan, H., Zheng, D., Zhang, W., Xiong, H., Zhou, H., Wen, Y., Hu, Y., et al., 2022. ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnol. J. 20, 2077-2088.
|
Gao, J., Zhao, Y., Zhao, Z., Liu, W., Jiang, C., Li, J., Zhang, Z., Zhang, H., Zhang, Y., Wang, X., Sun, X., Li, Z., 2023. RRS1 shapes robust root system to enhance drought resistance in rice. New Phytol. 238, 1146-1162.
|
Gupta, A., Rico-Medina, A., Cano-Delgado, A.I., 2020. The physiology of plant responses to drought. Science 368, 266-269.
|
Guseman, J.M., Webb, K., Srinivasan, C., Dardick, C., 2017. DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J. 89, 1093-1105.
|
Hochholdinger, F., Park, W.J., Sauer, M., Woll, K., 2004a. From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci. 9, 42-48.
|
Hochholdinger, F., Woll, K., Sauer, M., Dembinsky, D., 2004b. Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Ann. Bot. 93, 359-368.
|
Hochholdinger, F., Yu, P., Marcon, C., 2018. Genetic control of root system development in maize. Trends Plant Sci. 23, 79-88.
|
Hu, H., Xiong, L., 2014. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 65, 715-741.
|
Huang, G., Liang, W., Sturrock, C.J., Pandey, B.K., Giri, J., Mairhofer, S., Wang, D., Muller, L., Tan, H., York, L.M., et al., 2018. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nat. Commun. 9, 2346.
|
Jaffe, M.J., Takahashi, H., Biro, R.L., 1985. A pea mutant for the study of hydrotropism in roots. Science 230, 445-447.
|
Jaramillo, R.E., Nord, E.A., Chimungu, J.G., Brown, K.M., Lynch, J.P., 2013. Root cortical burden influences drought tolerance in maize. Ann. Bot. 112, 429-437.
|
Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do Choi, Y., Kim, M., Reuzeau, C., Kim, J.K., 2010. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185-197.
|
Jeong, J.S., Kim, Y.S., Redillas, M.C., Jang, G., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C., Kim, J.K., 2013. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol. J. 11, 101-114.
|
Jing, H., Wilkinson, E.G., Sageman-Furnas, K., Strader, L.C., 2023. Auxin and abiotic stress responses. J. Exp. Bot. 74, 7000-7014.
|
Jung, H., Chung, P.J., Park, S.H., Redillas, M., Kim, Y.S., Suh, J.W., Kim, J.K., 2017. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol. J. 15, 1295-1308.
|
Kang, J., Peng, Y., Xu, W., 2022. Crop root responses to drought stress: molecular mechanisms, nutrient regulations, and interactions with microorganisms in the Rhizosphere. Int. J. Mol. Sci. 23.
|
Karlova, R., Boer, D., Hayes, S., Testerink, C., 2021. Root plasticity under abiotic stress. Plant Physiol. 187, 1057-1070.
|
Kitomi, Y., Hanzawa, E., Kuya, N., Inoue, H., Hara, N., Kawai, S., Kanno, N., Endo, M., Sugimoto, K., Yamazaki, T., et al., 2020. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. U.S.A. 117, 21242-21250.
|
Kobayashi, A., Takahashi, A., Kakimoto, Y., Miyazawa, Y., Fujii, N., Higashitani, A., Takahashi, H., 2007. A gene essential for hydrotropism in roots. Proc. Natl. Acad. Sci. U.S.A. 104, 4724-4729.
|
Koevoets, I.T., Venema, J.H., Elzenga, J.T., Testerink, C., 2016. Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 7, 1335.
|
Kuya, N., Nishijima, R., Kitomi, Y., Kawakatsu, T., Uga, Y., 2023. Transcriptome profiles of rice roots under simulated microgravity conditions and following gravistimulation. Front. Plant Sci. 14, 1193042.
|
Lee, D.K., Jung, H., Jang, G., Jeong, J.S., Kim, Y.S., Ha, S.H., Do Choi, Y., Kim, J.K., 2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol. 172, 575-588.
|
Li, C., Guo, J., Wang, D., Chen, X., Guan, H., Li, Y., Zhang, D., Liu, X., He, G., Wang, T., Li, Y., 2023. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ. 46, 1860-1872.
|
Li, C., Li, L., Reynolds, M.P., Wang, J., Chang, X., Mao, X., Jing, R., 2021. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. J. Exp. Bot. 72, 5117-5133.
|
Li, C., Sun, B., Li, Y., Liu, C., Wu, X., Zhang, D., Shi, Y., Song, Y., Buckler, E.S., Zhang, Z., Wang, T., Li, Y., 2016. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genom. 17, 894.
|
Li, Y., Yuan, W., Li, L., Miao, R., Dai, H., Zhang, J., Xu, W., 2020. Light-dark modulates root hydrotropism associated with gravitropism by involving amyloplast response in Arabidopsis. Cell Rep. 32, 108198.
|
Li, Z., Liu, C., Zhang, Y., Wang, B., Ran, Q., Zhang, J., 2019. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. J. Exp. Bot. 70, 5471-5486.
|
Li, Z., Mu, P., Li, C., Zhang, H., Li, Z., Gao, Y., Wang, X., 2005. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor. Appl. Genet. 110, 1244-1252.
|
Liu, L., Gallagher, J., Arevalo, E.D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., Jackson, D., 2021. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287-294.
|
Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., He, Z., Yang, D.L., 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5, 389-400.
|
Lu, Y., Zhang, S., Shah, T., Xie, C., Hao, Z., Li, X., Farkhari, M., Ribaut, J.M., Cao, M., Rong, T., Xu, Y., 2010. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc. Natl. Acad. Sci. U.S.A. 107, 19585-19590.
|
Lynch, J., 1995. Root architecture and plant productivity. Plant Physiol. 109, 7-13.
|
Lynch, J.P., 2013. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347-357.
|
Lynch, J.P., 2018. Rightsizing root phenotypes for drought resistance. J. Exp. Bot. 69, 3279-3292.
|
Lynch, J.P., 2022. Harnessing root architecture to address global challenges. Plant J. 109, 415-431.
|
Ma, H., Liu, C., Li, Z., Ran, Q., Xie, G., Wang, B., Fang, S., Chu, J., Zhang, J., 2018. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. 178, 753-770.
|
Mao, H., Li, S., Chen, B., Jian, C., Mei, F., Zhang, Y., Li, F., Chen, N., Li, T., Du, L., Ding, L., Wang, Z., Cheng, X., Wang, X., Kang, Z., 2022. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 15, 276-292.
|
Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., Li, J., Tran, L.S., Qin, F., 2015. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 8326.
|
Maqbool, S., Hassan, M.A., Xia, X., York, L.M., Rasheed, A., He, Z., 2022. Root system architecture in cereals: progress, challenges and perspective. Plant J. 110, 23-42.
|
Mei, F., Chen, B., Du, L., Li, S., Zhu, D., Chen, N., Zhang, Y., Li, F., Wang, Z., Cheng, X., Ding, L., Kang, Z., Mao, H., 2022. A gain-of-function allele of a DREB transcription factor gene ameliorates drought tolerance in wheat. Plant Cell 34, 4472-4494.
|
Meister, R., Rajani, M.S., Ruzicka, D., Schachtman, D.P., 2014. Challenges of modifying root traits in crops for agriculture. Trends Plant Sci. 19, 779-788.
|
Miao, R., Yuan, W., Wang, Y., Garcia-Maquilon, I., Dang, X., Li, Y., Zhang, J., Zhu, Y., Rodriguez, P.L., Xu, W., 2021. Low ABA concentration promotes root growth and hydrotropism through relief of ABA INSENSITIVE 1-mediated inhibition of plasma membrane H+-ATPase 2. Sci. Adv. 7.
|
Miyazawa, Y., Takahashi, A., Kobayashi, A., Kaneyasu, T., Fujii, N., Takahashi, H., 2009. GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol. 149, 835-840.
|
Morris, E.C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., von Wangenheim, D., Atkinson, B., Sturrock, C.J., Lynch, J.P., et al., 2017. Shaping 3D root system architecture. Curr. Biol. 27, R919-R930.
|
Muthert, L.W.F., Izzo, L.G., van Zanten, M., Aronne, G., 2019. Root tropisms: investigations on earth and in space to unravel plant growth direction. Front. Plant Sci. 10, 1807.
|
Nolan, T.M., Vukasinovic, N., Liu, D., Russinova, E., Yin, Y., 2020. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32, 295-318.
|
Ogura, T., Goeschl, C., Filiault, D., Mirea, M., Slovak, R., Wolhrab, B., Satbhai, S.B., Busch, W., 2019. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of Auxin transport. Cell 178, 400-412.e416.
|
Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., Tasaka, M., 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118-130.
|
Orosa-Puente, B., Leftley, N., von Wangenheim, D., Banda, J., Srivastava, A.K., Hill, K., Truskina, J., Bhosale, R., Morris, E., Srivastava, M., et al., 2018. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 362, 1407-1410.
|
Ouyang, W., Chen, L., Ma, J., Liu, X., Chen, H., Yang, H., Guo, W., Shan, Z., Yang, Z., Chen, S., et al., 2022. Identification of quantitative trait locus and candidate genes for drought tolerance in a soybean recombinant inbred line population. Int. J. Mol. Sci. 23.
|
Oyiga, B.C., Palczak, J., Wojciechowski, T., Lynch, J.P., Naz, A.A., Leon, J., Ballvora, A., 2020. Genetic components of root architecture and anatomy adjustments to water-deficit stress in spring barley. Plant Cell Environ. 43, 692-711.
|
Placido, D.F., Sandhu, J., Sato, S.J., Nersesian, N., Quach, T., Clemente, T.E., Staswick, P.E., Walia, H., 2020. The LATERAL ROOT DENSITY gene regulates root growth during water stress in wheat. Plant Biotechnol. J. 18, 1955-1968.
|
Prince, S.J., Murphy, M., Mutava, R.N., Durnell, L.A., Valliyodan, B., Shannon, J.G., Nguyen, H.T., 2017. Root xylem plasticity to improve water use and yield in water-stressed soybean. J. Exp. Bot. 68, 2027-2036.
|
Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., et al., 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 110, 865-880.
|
Redillas, M.C., Jeong, J.S., Kim, Y.S., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C., Kim, J.K., 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10, 792-805.
|
Ren, W., Zhao, L., Liang, J., Wang, L., Chen, L., Li, P., Liu, Z., Li, X., Zhang, Z., Li, J., et al., 2022. Genome-wide dissection of changes in maize root system architecture during modern breeding. Nat. Plants 8, 1408-1422.
|
Rodriguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E., Lippman, Z.B., 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470-480.e478.
|
Rogers, E.D., Monaenkova, D., Mijar, M., Nori, A., Goldman, D.I., Benfey, P.N., 2016. X-Ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol. 171, 2028-2040.
|
Saucedo, M., Ponce, G., Campos, M.E., Eapen, D., Garcia, E., Lujan, R., Sanchez, Y., Cassab, G.I., 2012. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J. Exp. Bot. 63, 3587-3601.
|
Schneider, H.M., Lor, V.S.N., Hanlon, M.T., Perkins, A., Kaeppler, S.M., Borkar, A.N., Bhosale, R., Zhang, X., Rodriguez, J., Bucksch, A., et al., 2022. Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL-interacting serine/threonine-protein kinase 15 (ZmCIPK15) Plant Cell Environ. 45, 837-853.
|
Schneider, H.M., Lynch, J.P., 2020. Should root plasticity be a crop breeding target? Front. Plant Sci. 11, 546.
|
Semagn, K., Beyene, Y., Warburton, M.L., Tarekegne, A., Mugo, S., Meisel, B., Sehabiague, P., Prasanna, B.M., 2013. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom. 14, 313.
|
Shao, M.R., Jiang, N., Li, M., Howard, A., Lehner, K., Mullen, J.L., Gunn, S.L., McKay, J.K., Topp, C.N., 2021. Complementary phenotyping of maize root system architecture by root pulling force and X-ray imaging. Plant Phenom. 2021, 9859254.
|
Sharma, M., Singh, D., Saksena, H.B., Sharma, M., Tiwari, A., Awasthi, P., Botta, H.K., Shukla, B.N., Laxmi, A., 2021. Understanding the intricate web of phytohormone signalling in modulating root system architecture. Int. J. Mol. Sci. 22.
|
Shelden, M.C., Munns, R., 2023. Crop root system plasticity for improved yields in saline soils. Front. Plant Sci. 14, 1120583.
|
Shen, J., Li, C., Mi, G., Li, L., Yuan, L., Jiang, R., Zhang, F., 2013. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J. Exp. Bot. 64, 1181-1192.
|
Shkolnik, D., Nuriel, R., Bonza, M.C., Costa, A., Fromm, H., 2018. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+. signal essential for root water tracking in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 115, 8031-8036.
|
Siddiqui, M.N., Leon, J., Naz, A.A., Ballvora, A., 2021. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 72, 1007-1019.
|
Slota, M., Maluszynski, M., Szarejko, I., 2016. An automated, cost-effective and scalable, flood-and-drain based root phenotyping system for cereals. Plant Methods 12, 34.
|
Steffens, B., Rasmussen, A., 2016. The physiology of adventitious roots. Plant Physiol., 170, 603-617.
|
Sun, X., Xiong, H., Jiang, C., Zhang, D., Yang, Z., Huang, Y., Zhu, W., Ma, S., Duan, J., Wang, X., et al., 2022. Natural variation of DROT1 confers drought adaptation in upland rice. Nat. Commun. 13, 4265.
|
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., Shinozaki, K., 2018. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235-238.
|
Tang, N., Shahzad, Z., Lonjon, F., Loudet, O., Vailleau, F., Maurel, C., 2018. Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat. Commun., 9, 3884.
|
Tenorio Berrio, R., Nelissen, H., Inze, D., Dubois, M., 2022. Increasing yield on dry fields: molecular pathways with growing potential. Plant J. 109, 323-341.
|
Uga, Y., Hanzawa, E., Nagai, S., Sasaki, K., Yano, M., Sato, T., 2012. Identification of qSOR1, a major rice QTL involved in soil-surface rooting in paddy fields. Theor. Appl. Genet. 124, 75-86.
|
Uga, Y., Kitomi, Y., Yamamoto, E., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., 2015. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. Rice 8, 8.
|
Uga, Y., Okuno, K., Yano, M., 2011. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 62, 2485-2494.
|
Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., et al., 2013a. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 45, 1097-1102.
|
Uga, Y., Yamamoto, E., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., 2013b. A major QTL controlling deep rooting on rice chromosome 4. Sci. Rep. 3, 3040.
|
Valifard, M., Le Hir, R., Muller, J., Scheuring, D., Neuhaus, H.E., Pommerrenig, B., 2021. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance. Plant Physiol. 187, 2716-2730.
|
van Eeuwijk, F.A., Bink, M.C., Chenu, K., Chapman, S.C., 2010. Detection and use of QTL for complex traits in multiple environments. Curr. Opin. Plant Biol. 13, 193-205.
|
Waadt, R., 2020. Phytohormone signaling mechanisms and genetic methods for their modulation and detection. Curr. Opin. Plant Biol. 57, 31-40.
|
Waadt, R., Seller, C.A., Hsu, P.K., Takahashi, Y., Munemasa, S., Schroeder, J.I., 2022. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 23, 680-694.
|
Waidmann, S., Ruiz Rosquete, M., Scholler, M., Sarkel, E., Lindner, H., LaRue, T., Petrik, I., Dunser, K., Martopawiro, S., Sasidharan, R., et al., 2019. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat. Commun. 10, 3540.
|
Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., Yang, X., Qin, F., 2016. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1233-1241.
|
Wasson, A.P., Richards, R.A., Chatrath, R., Misra, S.C., Prasad, S.V., Rebetzke, G.J., Kirkegaard, J.A., Christopher, J., Watt, M., 2012. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 63, 3485-3498.
|
Wei, W., Lu, L., Bian, X.H., Li, Q.T., Han, J.Q., Tao, J.J., Yin, C.C., Lai, Y.C., Li, W., Bi, Y.D., et al., 2023. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. J. Integr. Plant Biol. 65, 1636-1650.
|
Wei, Z., Li, J., 2016. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant, 9, 86-100.
|
Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U., Schmulling, T., 2010. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22, 3905-3920.
|
Wu, Q., Wu, J., Hu, P., Zhang, W., Ma, Y., Yu, K., Guo, Y., Cao, J., Li, H., Li, B., et al., 2023. Quantification of the three-dimensional root system architecture using an automated rotating imaging system. Plant Methods 19, 11.
|
Wu, X., Feng, H., Wu, D., Yan, S., Zhang, P., Wang, W., Zhang, J., Ye, J., Dai, G., Fan, Y., et al., 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22, 185.
|
Xiang, Y., Sun, X., Gao, S., Qin, F., Dai, M., 2017. Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol. Plant 10, 456-469.
|
Xiao, Y., Liu, H., Wu, L., Warburton, M., Yan, J., 2017. Genome-wide association studies in maize: praise and stargaze. Mol. Plant 10, 359-374.
|
Xu, F., Liao, H., Yang, J., Zhang, Y., Yu, P., Cao, Y., Fang, J., Chen, S., Li, L., Sun, L., et al., 2023. Auxin-producing bacteria promote barley rhizosheath formation. Nat. Commun. 14, 5800.
|
Xu, L., Naylor, D., Dong, Z., Simmons, T., Pierroz, G., Hixson, K.K., Kim, Y.M., Zink, E.M., Engbrecht, K.M., Wang, Y., et al., 2018. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. U.S.A. 115, E4284-e4293.
|
Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J.H., Batchelor, W.D., Xiong, L., Yan, J., 2020. Crop Phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13, 187-214.
|
Ye, H., Roorkiwal, M., Valliyodan, B., Zhou, L., Chen, P., Varshney, R.K., Nguyen, H.T., 2018. Genetic diversity of root system architecture in response to drought stress in grain legumes. J. Exp. Bot. 69, 3267-3277.
|
York, L.M., Galindo-Castaneda, T., Schussler, J.R., Lynch, J.P., 2015. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 66, 2347-2358.
|
Yoshida, T., Mogami, J., Yamaguchi-Shinozaki, K., 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr. Opin. Plant Biol. 21, 133-139.
|
Yu, P., Gutjahr, C., Li, C., Hochholdinger, F., 2016. Genetic control of lateral root formation in cereals. Trends Plant Sci. 21, 951-961.
|
Yue, B., Xue, W., Xiong, L., Yu, X., Luo, L., Cui, K., Jin, D., Xing, Y., Zhang, Q., 2006. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172, 1213-1228.
|
Zhan, A., Schneider, H., Lynch, J.P., 2015. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol. 168, 1603-1615.
|
Zhang, H., Sun, X., Dai, M., 2022. Improving crop drought resistance with plant growth regulators and rhizobacteria: mechanisms, applications, and perspectives. .Plant Commun. 3, 100228.
|
Zhang, H., Xiang, Y., He, N., Liu, X., Liu, H., Fang, L., Zhang, F., Sun, X., Zhang, D., Li, X., et al., 2020a. Enhanced vitamin C production mediated by an ABA-Induced PTP-like nucleotidase improves plant drought tolerance in Arabidopsis and maize. Mol. Plant 13, 760-776.
|
Zhang, X., Mi, Y., Mao, H., Liu, S., Chen, L., Qin, F., 2020b. Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol. J. 18, 1271-1283.
|
Zhang, Y., Wang, X., Luo, Y., Zhang, L., Yao, Y., Han, L., Chen, Z., Wang, L., Li, Y., 2020c. OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J. 8, 480-491.
|
Zhu, J., Brown, K.M., Lynch, J.P., 2010. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) Plant Cell Environ. 33, 740-749.
|
Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273.
|
Zhu, J.K., 2016. Abiotic stress signaling and responses in plants. Cell 167, 313-324.
|