9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 4
Apr.  2025
Turn off MathJax
Article Contents

Natural selection shaped the protective effect of the mtDNA lineage against obesity in Han Chinese populations

doi: 10.1016/j.jgg.2024.06.005
Funds:

This research is supported by the National Natural Science Foundation of China (32270670, 32288101, 32271186, and 32200482), the National Basic Research Program of China (2015FY111700), and the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-066).

  • Received Date: 2024-01-19
  • Accepted Date: 2024-06-06
  • Rev Recd Date: 2024-06-06
  • Available Online: 2025-07-11
  • Publish Date: 2025-04-28
  • Mitochondria play a key role in lipid metabolism, and mitochondrial DNA (mtDNA) mutations are thus considered to affect obesity susceptibility by altering oxidative phosphorylation and mitochondrial function. In this study, we investigate mtDNA variants that may affect obesity risk in 2877 Han Chinese individuals from 3 independent populations. The association analysis of 16 basal mtDNA haplogroups with body mass index, waist circumference, and waist-to-hip ratio reveals that only haplogroup M7 is significantly negatively correlated with all three adiposity-related anthropometric traits in the overall cohort, verified by the analysis of a single population, i.e., the Zhengzhou population. Furthermore, subhaplogroup analysis suggests that M7b1a1 is the most likely haplogroup associated with a decreased obesity risk, and the variation T12811C (causing Y159H in ND5) harbored in M7b1a1 may be the most likely candidate for altering the mitochondrial function. Specifically, we find that proportionally more nonsynonymous mutations accumulate in M7b1a1 carriers, indicating that M7b1a1 is either under positive selection or subject to a relaxation of selective constraints. We also find that nuclear variants, especially in DACT2 and PIEZO1, may functionally interact with M7b1a1.
  • loading
  • Ballard, J.W.O.,Rand, D.M., 2005. The population biology of mitochondrial DNA and its phylogenetic implications. Annu. Rev. Ecol. Evol. Syst. 36, 621-642.
    Behar, D.M., van Oven, M., Rosset, S., Metspalu, M., Loogvali, E.L., Silva, N.M., Kivisild, T., Torroni, A.,Villems, R., 2012. A “copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675-684.
    Cai, W., Fu, Q., Zhou, X., Qu, H., Tong, Y.,Guan, M.X., 2008. Mitochondrial variants may influence the phenotypic manifestation of Leber's hereditary optic neuropathy-associated nd4 g11778a mutation. J. Genet. Genomics 35, 649-655.
    Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M.,Lee, J.J., 2015. Second-generation plink: rising to the challenge of larger and richer datasets. Gigascience 4, 7.
    Choi, S.W.,O'Reilly, P.F., 2019. Prsice-2: polygenic risk score software for biobank-scale data. Gigascience 8.
    Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W.,McCabe, A.M., 2009. The last glacial maximum. Science 325, 710-714.
    Coen, P.M., Hames, K.C., Leachman, E.M., DeLany, J.P., Ritov, V.B., Menshikova, E.V., Dube, J.J., Stefanovic-Racic, M., Toledo, F.G.,Goodpaster, B.H., 2013. Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity 21, 2362-2371.
    Dunham-Snary, K.J.,Ballinger, S.W., 2013. Mitochondrial genetics and obesity: evolutionary adaptation and contemporary disease susceptibility. Free Radic. Biol. Med. 65, 1229-1237.
    Ebner, S., Mangge, H., Langhof, H., Halle, M., Siegrist, M., Aigner, E., Paulmichl, K., Paulweber, B., Datz, C., Sperl, W., et al., 2015. Mitochondrial haplogroup t is associated with obesity in Austrian juveniles and adults. PLoS One 10, e0135622.
    Edgar, R.C., 2004. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797.
    Elson, J.L., Turnbull, D.M.,Howell, N., 2004. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am. J. Hum. Genet. 74, 229-238.
    Fan, L.,Yao, Y.G., 2011. Mitotool: a web server for the analysis and retrieval of human mitochondrial DNA sequence variations. Mitochondrion 11, 351-356.
    Flaquer, A., Baumbach, C., Kriebel, J., Meitinger, T., Peters, A., Waldenberger, M., Grallert, H.,Strauch, K., 2014. Mitochondrial genetic variants identified to be associated with bmi in adults. PLoS One 9.
    Fu, Q., Mittnik, A., Johnson, P.L.F., Bos, K., Lari, M., Bollongino, R., Sun, C., Giemsch, L., Schmitz, R., Burger, J., et al., 2013. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553-559.
    Goodarzi, M.O., 2018. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 6, 223-236.
    Guo, R., Zong, S., Wu, M., Gu, J.,Yang, M., 2017. Architecture of human mitochondrial respiratory megacomplex i(2)iii(2)iv(2). Cell 170, 1247-1257 e1212.
    Hao, M., Pu, W.L., Li, Y., Wen, S.Q., Sun, C., Ma, Y.Y., Zheng, H.X., Chen, X.D., Tan, J.Z., Zhang, G.Q., et al., 2021. The Huabiao project: whole-exome sequencing of 5000 Han Chinese individuals. J. Genet. Genomics 48, 1032-1035.
    Haththotuwa, R.N., Wijeyaratne, C.N.,Senarath, U. 2020. Chapter 1 - worldwide epidemic of obesity, in: Mahmood, T.A., Arulkumaran, S., Chervenak, F.A. (Eds.), Obesity and Obstetrics (second ed.). Elsevier, pp. 3-8.
    Heinonen, S., Jokinen, R., Rissanen, A.,Pietilainen, K.H., 2020. White adipose tissue mitochondrial metabolism in health and in obesity. Obes. Rev. 21, e12958.
    Ho, R.C.M., Niti, M., Kua, E.H.,Ng, T.P., 2008. Body mass index, waist circumference, waist-hip ratio and depressive symptoms in Chinese elderly: a population-based study. Int. J. Geriatr. Psychiatry 23, 401-408.
    Huang, S., Fan, P., Zhang, C., Xie, J., Gu, X., Lei, S., Chen, Z.,Huang, Z., 2021. Exosomal microrna-503-3p derived from macrophages represses glycolysis and promotes mitochondrial oxidative phosphorylation in breast cancer cells by elevating dact2. Cell Death Discov. 7, 119.
    Hudson, G., Gomez-Duran, A., Wilson, I.J.,Chinnery, P.F., 2014. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet. 10, e1004369.
    Huoponen, K., Lamminen, T., Juvonen, V., Aula, P., Nikoskelainen, E.,Savontaus, M.L., 1993. The spectrum of mitochondrial DNA mutations in families with Leber hereditary optic neuroretinopathy. Hum. Genet. 92, 379-384.
    Hwang, H.S.,Kim, H.A., 2015. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035-26054.
    Ji, F., Sharpley, M.S., Derbeneva, O., Alves, L.S., Qian, P., Wang, Y., Chalkia, D., Lvova, M., Xu, J., Yao, W., et al., 2012. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude tibetans. Proc. Natl. Acad. Sci. U.S.A. 109, 7391-7396.
    Ji, Y.L., Zhang, A.M., Jia, X.Y., Zhang, Y.P., Xiao, X.S., Li, S.Q., Guo, X.M., Bandelt, H.J., Zhang, Q.J.,Yao, Y.G., 2008. Mitochondrial DNA haplogroups m7b1 ' 2 and m8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778g -> a mutation. Am. J. Hum. Genet. 83, 760-768.
    Jia, Y., Yang, Y., Brock, M.V., Zhan, Q., Herman, J.G.,Guo, M., 2013. Epigenetic regulation of dact2, a key component of the wnt signalling pathway in human lung cancer. J. Pathol. 230, 194-204.
    Jiang, M., Zhang, Y.X., Bu, W.J., Li, P., Chen, J.H., Cao, M., Dong, Y.C., Sun, Z.J.,Dong, D.L., 2023. Piezo1 channel activation stimulates atp production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells. Br. J. Pharmacol. 180, 1862-1877.
    Kang, L., Zheng, H.X., Chen, F., Yan, S., Liu, K., Qin, Z., Liu, L., Zhao, Z., Li, L., Wang, X., et al., 2013. Mtdna lineage expansions in sherpa population suggest adaptive evolution in Tibetan highlands. Mol. Biol. Evol. 30, 2579-2587.
    Klop, B., Elte, J.W.F.,Cabezas, M.C., 2013. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5, 1218-1240.
    Knoll, N., Jarick, I., Volckmar, A.L., Klingenspor, M., Illig, T., Grallert, H., Gieger, C., Wichmann, H.E., Peters, A., Wiegand, S., et al., 2014. Mitochondrial DNA variants in obesity. PLoS One 9.
    Kraja, A.T., Liu, C., Fetterman, J.L., Graff, M., Have, C.T., Gu, C., Yanek, L.R., Feitosa, M.F., Arking, D.E., Chasman, D.I., et al., 2019. Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits. Am. J. Hum. Genet. 104, 112-138.
    Levin, L., Zhidkov, I., Gurman, Y., Hawlena, H.,Mishmar, D., 2013. Functional recurrent mutations in the human mitochondrial phylogeny: dual roles in evolution and disease. Genome Biol. Evol. 5, 876-890.
    Li, F.X., Ji, F.Y., Zheng, S.Z., Yao, W., Xiao, Z.L.,Qian, G.S., 2011. Mtdna haplogroups m7 and b in southwestern han Chinese at risk for acute mountain sickness. Mitochondrion 11, 553-558.
    Li, X., Kordsmeier, J., Nookaew, I., Kim, H.N.,Xiong, J., 2022. Piezo1 stimulates mitochondrial function via camp signaling. Faseb. J. 36, e22519.
    Li, Y.C., Tian, J.Y., Liu, F.W., Yang, B.Y., Gu, K.S.Y., Rahman, Z.U., Yang, L.Q., Chen, F.H., Dong, G.H.,Kong, Q.P., 2019a. Neolithic millet farmers contributed to the permanent settlement of the Tibetan plateau by adopting barley agriculture. Natl. Sci. Rev. 6, 1005-1013.
    Li, Y.C., Ye, W.J., Jiang, C.G., Zeng, Z., Tian, J.Y., Yang, L.Q., Liu, K.J.,Kong, Q.P., 2019b. River valleys shaped the maternal genetic landscape of Han Chinese. Mol. Biol. Evol. 36, 1643-1652.
    Liao, J., Lu, W., Chen, Y., Duan, X., Zhang, C., Luo, X., Lin, Z., Chen, J., Liu, S., Yan, H., et al., 2021. Upregulation of piezo1 (piezo type mechanosensitive ion channel component 1) enhances the intracellular free calcium in pulmonary arterial smooth muscle cells from idiopathic pulmonary arterial hypertension patients. Hypertension 77, 1974-1989.
    Luo, J., Shen, S., Xia, J., Wang, J.,Gu, Z., 2022. Mitochondria as the essence of yang qi in the human body. Phenomics 2, 336-348.
    Mahmoud, A.M., 2022. An overview of epigenetics in obesity: the role of lifestyle and therapeutic interventions. Int. J. Mol. Sci. 23.
    Murthy, S.E., Dubin, A.E.,Patapoutian, A., 2017. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771-783.
    Nam, K., Kim, J.,Lee, S., 2022. Genome-wide study on 72,298 individuals in Korean biobank data for 76 traits. Cell Genom. 2, 100189.
    Neel, J.V., 1962. Diabetes mellitus - a thrifty genotype rendered detrimental by progress. Am. J. Hum. Genet. 14, 353.
    Pereira, L., Soares, P., Radivojac, P., Li, B.,Samuels, D.C., 2011. Comparing phylogeny and the predicted pathogenicity of protein variations reveals equal purifying selection across the global human mtdna diversity. Am. J. Hum. Genet. 88, 433-439.
    Picardi, E.,Pesole, G., 2012. Mitochondrial genomes gleaned from human whole-exome sequencing. Nat. Methods 9, 523-524.
    Pienaar, I.S., Howell, N.,Elson, J.L., 2017. Mutpred mutational load analysis shows mildly deleterious mitochondrial DNA variants are not more prevalent in alzheimer's patients, but may be under-represented in healthy older individuals. Mitochondrion 34, 141-146.
    Pigeyre, M., Yazdi, F.T., Kaur, Y.,Meyre, D., 2016. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 130, 943-986.
    Qasim, A., Turcotte, M., de Souza, R.J., Samaan, M.C., Champredon, D., Dushoff, J., Speakman, J.R.,Meyre, D., 2018. On the origin of obesity: identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes. Rev. 19, 121-149.
    Randall, J.C., Winkler, T.W., Kutalik, Z., Berndt, S.I., Jackson, A.U., Monda, K.L., Kilpelainen, T.O., Esko, T., Magi, R., Li, S., et al., 2013. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500.
    Revesz, D., Verhoeven, J.E., Picard, M., Lin, J., Sidney, S., Epel, E.S., Penninx, B.,Puterman, E., 2018. Associations between cellular aging markers and metabolic syndrome: findings from the cardia study. J. Clin. Endocrinol. Metab. 103, 148-157.
    Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V.,Wallace, D.C., 2004. Effects of purifying and adaptive selection on regional variation in human mtdna. Science 303, 223-226.
    Shakun, J.D.,Carlson, A.E., 2010. A global perspective on last glacial maximum to holocene climate change. Quat. Sci. Rev. 29, 1801-1816.
    Soares, P., Ermini, L., Thomson, N., Mormina, M., Rito, T., Rohl, A., Salas, A., Oppenheimer, S., Macaulay, V.,Richards, M.B., 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740-759.
    Speakman, J.R., 2008. Thrifty genes for obesity, an attractive but flawed idea, and an alternative perspective: the 'drifty gene' hypothesis. Int. J. Obes. 32, 1611-1617.
    Stefan, N., Schick, F.,Haring, H.U., 2017. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 26, 292-300.
    Su, X.,Peng, D.Q., 2020. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin. Chim. Acta 503, 128-135.
    Sun, D.Y., Niu, Z.M., Zheng, H.X., Wu, F., Jiang, L.Y.Q., Han, T.Q., Wei, Y., Wang, J.C.,Jin, L., 2021. A mitochondrial DNA variant elevates the risk of gallstone disease by altering mitochondrial function. Cell. Mol. Gastroenterol Hepatol. 11, 1211-1226.
    Swain, S.M., Romac, J.M., Shahid, R.A., Pandol, S.J., Liedtke, W., Vigna, S.R.,Liddle, R.A., 2020. Trpv4 channel opening mediates pressure-induced pancreatitis initiated by piezo1 activation. J. Clin. Invest. 130, 2527-2541.
    Swinburn, B.A., Kraak, V.I., Allender, S., Larijani, B.,Tootee, A., 2019. The global syndemic of obesity, undernutrition, and climate change: the lancet commission report (vol 393, pg 791, 2019). Lancet 393, 746-746.
    Tingley, D., Yamamoto, T., Hirose, K., Keele, L.,Imai, K., 2014. Mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 38.
    van Oven, M.,Kayser, M., 2009. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386-E394.
    Wallace, D.C., 2007. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781-821.
    Xu, Q., Sun, P., Feng, C., Chen, Q., Sun, X., Chen, Y.,Tian, G., 2022. Varying clinical phenotypes of mitochondrial DNA t12811c mutation: a case series report. Front Med (Lausanne) 9, 912103.
    Xu, S.H., Yin, X.Y., Li, S.L., Jin, W.F., Lou, H.Y., Yang, L., Gong, X.H., Wang, H.Y., Shen, Y.P., Pan, X.D., et al., 2009. Genomic dissection of population substructure of Han Chinese and its implication in association studies. Am. J. Hum. Genet. 85, 762-774.
    Xue, F.Z., Wang, Y., Xu, S.H., Zhang, F., Wen, B., Wu, X.S., Lu, M., Deka, R., Qian, J.,Jin, L., 2008. A spatial analysis of genetic structure of human populations in China reveals distinct difference between maternal and paternal lineages. Eur. J. Hum. Genet. 16, 705-717.
    Yuan, Q., Su, L.P., Wang, T., Liu, Y., Lu, Z.X., Zhou, K.X., Guo, S.S., Gu, X.W., Xing, J.L.,Guo, X., 2021. Mitochondrial DNA haplogroup m7 confers a reduced risk of colorectal cancer in a han population from northern China. J. Cell Mol. Med. 25, 7538-7544.
    Zhang, L., Wang, W., Zhu, B.,Wang, X., 2017. Epithelial mitochondrial dysfunction in lung disease. Adv. Exp. Med. Biol. 1038, 201-217.
    Zhang, L.F., Wang, Z.W., Wang, X., Chen, Z., Shao, L., Tian, Y., Zheng, C.Y., Li, S.N., Zhu, M.L., Gao, R.L., et al., 2020a. Prevalence of overweight and obesity in China: results from a cross-sectional study of 441 thousand adults, 2012-2015. Obes. Res. Clin. Pract. 14, 119-126.
    Zhang, N., Li, Y., Xie, M., Song, Y., Liu, J., Lei, T., Shen, Y., Yu, J.,Yang, M., 2020b. Dact2 modulated by tfap2a-mediated allelic transcription promotes egfr-tkis efficiency in advanced lung adenocarcinoma. Biochem. Pharmacol. 172, 113772.
    Zhao, Q., Zhou, H., Li, X.,Xiao, B., 2019. The mechanosensitive piezo1 channel: a three-bladed propeller-like structure and a lever-like mechanogating mechanism. FEBS J. 286, 2461-2470.
    Zheng, H.X., Li, L., Jiang, X.Y., Yan, S., Qin, Z., Wang, X.,Jin, L., 2017. Mtdna genomes reveal a relaxation of selective constraints in low-bmi individuals in a Uyghur population. Hum. Genet. 136, 1353-1362.
    Zheng, H.X., Yan, S., Qin, Z.D., Wang, Y., Tan, J.Z., Li, H.,Jin, L., 2011. Major population expansion of East Asians began before neolithic time: evidence of mtdna genomes. PLoS One 6, e25835.
    Zheng, S.Z., Wang, C.Z., Qian, G.S., Wu, G.M., Guo, R.L., Li, Q., Chen, Y., Li, J., Li, H.N., He, B.F., et al., 2012. Role of mtdna haplogroups in copd susceptibility in a southwestern Han Chinese population. Free Radic. Biol. Med. 53, 473-481.
    Zhou, B.F., China, C.M.-A.G.o.t.W.G.o.O.i., 2002. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults - study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 15, 83-96.
    Zhou, H.P., Ishikawa, H., Yasumoto, R., Sakurai, K.,Sawamura, H., 2021. Leber hereditary optic neuropathy harboring a rare m.12811 t>c mitochondrial DNA mutation. Can. J. Ophthalmol. 56, e82-e84.
    Zhu, Z., Guo, Y., Shi, H., Liu, C.L., Panganiban, R.A., Chung, W., O'Connor, L.J., Himes, B.E., Gazal, S., Hasegawa, K., et al., 2020. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK biobank. J. Allergy Clin. Immunol. 145, 537-549.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return