9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

Improving regulatory T cell-based therapy: insights into post-translational modification regulation

doi: 10.1016/j.jgg.2024.09.014
  • Received Date: 2024-07-19
  • Accepted Date: 2024-09-24
  • Rev Recd Date: 2024-09-23
  • Available Online: 2025-07-11
  • Publish Date: 2024-09-30
  • Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
  • loading
  • Al-Mterin, M.A., Murshed, K., Alsalman, A., Abu-Dayeh, A., Elkord, E., 2022. Associations of different immune checkpoints-expressing CD4(+) Treg/ T cell subsets with disease-free survival in colorectal cancer patients. BMC Cancer 22, 601.
    Amini, L., Greig, J., Schmueck-Henneresse, M., Volk, H.D., Bezie, S., Reinke, P., Guillonneau, C., Wagner, D.L., Anegon, I., 2020. Super-Treg: toward a new era of adoptive Treg therapy enabled by genetic modifications. Front. Immunol. 11, 611638.
    Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L., Powrie, F., 1999. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995-1004.
    Beier, U.H., Wang, L., Bhatti, T.R., Liu, Y., Han, R., Ge, G., Hancock, W.W., 2011. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022-1029.
    Beier, U.H., Wang, L., Han, R., Akimova, T., Liu, Y., Hancock, W.W., 2012. Histone deacetylases 6 and 9 and sirtuin-1 control Foxp3+ regulatory T cell function through shared and isoform-specific mechanisms. Sci. Signal. 5, ra45.
    Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., Ochs, H.D., 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21.
    Bergmann, C., Strauss, L., Zeidler, R., Lang, S., Whiteside, T.L., 2007. Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol. Immunother. 56, 1429-1442.
    Bin Dhuban, K., d'Hennezel, E., Nagai, Y., Xiao, Y., Shao, S., Istomine, R., Alvarez, F., Ben-Shoshan, M., Ochs, H., Mazer, B., et al., 2017. Suppression by human FOXP3(+) regulatory T cells requires FOXP3-TIP60 interactions. Sci. Immunol. 2, eaai9297.
    Bittner, S., Hehlgans, T., Feuerer, M., 2023. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol. 44, 468-483.
    Bluestone, J.A., Buckner, J.H., Fitch, M., Gitelman, S.E., Gupta, S., Hellerstein, M.K., Herold, K.C., Lares, A., Lee, M.R., Li, K., et al., 2015. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189.
    Bolivar-Wagers, S., Loschi, M.L., Jin, S., Thangavelu, G., Larson, J.H., McDonald-Hyman, C.S., Aguilar, E.G., Saha, A., Koehn, B.H., Hefazi, M., et al., 2022. Murine CAR19 Tregs suppress acute graft-versus-host disease and maintain graft-versus-tumor responses. JCI Insight 7, e160674.
    Bonazzi, S., d'Hennezel, E., Beckwith, R.E.J., Xu, L., Fazal, A., Magracheva, A., Ramesh, R., Cernijenko, A., Antonakos, B., Bhang, H.C., et al., 2023. Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chem. Biol. 30, 235-247.
    Bopp, T., Becker, C., Klein, M., Klein-Hessling, S., Palmetshofer, A., Serfling, E., Heib, V., Becker, M., Kubach, J., Schmitt, S., et al., 2007. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303-1310.
    Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Hopner, S., Centonze, D., Bernardi, G., Dell'Acqua, M.L., et al., 2007. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225-1232.
    Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., Ramsdell, F., 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68-73.
    Canavan, J.B., Scotta, C., Vossenkamper, A., Goldberg, R., Elder, M.J., Shoval, I., Marks, E., Stolarczyk, E., Lo, J.W., Powell, N., et al., 2016. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut 65, 584-594.
    Cao, X., Cai, S.F., Fehniger, T.A., Song, J., Collins, L.I., Piwnica-Worms, D.R., Ley, T.J., 2007. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635-646.
    Cederbom, L., Hall, H., Ivars, F., 2000. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538-1543.
    Chen, Y., Zhang, X.S., Wang, Y.G., Lu, C., Li, J., Zhang, P., 2021. Imbalance of Th17 and Tregs in thymoma may be a pathological mechanism of myasthenia gravis. Mol. Immunol. 133, 67-76.
    Chen, Z., Barbi, J., Bu, S., Yang, H.Y., Li, Z., Gao, Y., Jinasena, D., Fu, J., Lin, F., Chen, C., et al., 2013. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39, 272-285.
    Chunder, N., Wang, L., Chen, C., Hancock, W.W., Wells, A.D., 2012. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J. Immunol. 189, 5659-5666.
    Clayton, A., Mitchell, J.P., Court, J., Mason, M.D., Tabi, Z., 2007. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 67, 7458-7466.
    Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., Cross, R., Sehy, D., Blumberg, R.S., Vignali, D.A., 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566-569.
    Cortez, J.T., Montauti, E., Shifrut, E., Gatchalian, J., Zhang, Y., Shaked, O., Xu, Y., Roth, T.L., Simeonov, D.R., Zhang, Y., et al., 2020. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416-420.
    Dahiya, S., Beier, U.H., Wang, L., Han, R., Jiao, J., Akimova, T., Angelin, A., Wallace, D.C., Hancock, W.W., 2020. HDAC10 deletion promotes Foxp3(+) T-regulatory cell function. Sci. Rep. 10, 424.
    Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., et al., 2011. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772-784.
    de la Rosa, M., Rutz, S., Dorninger, H., Scheffold, A., 2004. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480-2488.
    de Zoeten, E.F., Lee, I., Wang, L., Chen, C., Ge, G., Wells, A.D., Hancock, W.W., Ozkaynak, E., 2009. Foxp3 processing by proprotein convertases and control of regulatory T cell function. J. Biol. Chem. 284, 5709-5716.
    de Zoeten, E.F., Wang, L., Butler, K., Beier, U.H., Akimova, T., Sai, H., Bradner, J.E., Mazitschek, R., Kozikowski, A.P., Matthias, P., et al., 2011. Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(+) T-regulatory cells. Mol. Cell. Biol. 31, 2066-2078.
    Deaglio, S., Dwyer, K.M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J.F., Enjyoji, K., Linden, J., Oukka, M., et al., 2007. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257-1265.
    Deng, B., Yang, B., Chen, J., Wang, S., Zhang, W., Guo, Y., Han, Y., Li, H., Dang, Y., Yuan, Y., et al., 2022. Gallic acid induces T-helper-1-like T(reg) cells and strengthens immune checkpoint blockade efficacy. J. Immunother. Cancer 10, e004037.
    Deng, G., Nagai, Y., Xiao, Y., Li, Z., Dai, S., Ohtani, T., Banham, A., Li, B., Wu, S.L., Hancock, W., et al., 2015. Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J. Biol. Chem. 290, 20211-20220.
    Deng, G., Song, X., Fujimoto, S., Piccirillo, C.A., Nagai, Y., Greene, M.I., 2019. Foxp3 post-translational modifications and Treg suppressive activity. Front. Immunol. 10, 2486.
    Dikiy, S., Rudensky, A.Y., 2023. Principles of regulatory T cell function. Immunity 56, 240-255.
    do Sacramento, P.M., Sales, M., Kasahara, T.M., Monteiro, C., Oyamada, H., Dias, A.S.O., Lopes, L., Castro, C.T., Rossi, A.D., Milioni, L.M., et al., 2022. Major depression favors the expansion of Th17-like cells and decrease the proportion of CD39(+)Treg cell subsets in response to myelin antigen in multiple sclerosis patients. Cell. Mol. Life Sci. 79, 298.
    Dolgin, E., 2021. Treg engineers take aim at autoimmunity. Nat. Biotechnol. 39, 1317-1319.
    Dominguez-Villar, M., Hafler, D.A., 2018. Regulatory T cells in autoimmune disease. Nat. Immunol. 19, 665-673.
    Dong, S., Hiam-Galvez, K.J., Mowery, C.T., Herold, K.C., Gitelman, S.E., Esensten, J.H., Liu, W., Lares, A.P., Leinbach, A.S., Lee, M., et al., 2021a. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474.
    Dong, Y., Yang, C., Pan, F., 2021b. Post-translational regulations of Foxp3 in Treg cells and their therapeutic applications. Front. Immunol. 12, 626172.
    Du, J., Wang, Q., Yang, S., Chen, S., Fu, Y., Spath, S., Domeier, P., Hagin, D., Anover-Sombke, S., Haouili, M., et al., 2022. FOXP3 exon 2 controls T(reg) stability and autoimmunity. Sci. Immunol. 7, eabo5407.
    Du, T., Nagai, Y., Xiao, Y., Greene, M.I., Zhang, H., 2013. Lysosome-dependent p300/FOXP3 degradation and limits Treg cell functions and enhances targeted therapy against cancers. Exp. Mol. Pathol. 95, 38-45.
    Erhardt, A., Biburger, M., Papadopoulos, T., Tiegs, G., 2007. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology 45, 475-485.
    Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M.L., Fioretti, M.C., Alegre, M.L., Puccetti, P., 2003. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206-1212.
    Fleskens, V., Minutti, C.M., Wu, X., Wei, P., Pals, C., McCrae, J., Hemmers, S., Groenewold, V., Vos, H.J., Rudensky, A., et al., 2019. Nemo-like kinase drives Foxp3 stability and is critical for maintenance of immune tolerance by regulatory T cells. Cell Rep. 26, 3600-3612.
    Fontenot, J.D., Gavin, M.A., Rudensky, A.Y., 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330-336.
    Fueyo-Gonzalez, F., McGinty, M., Ningoo, M., Anderson, L., Cantarelli, C., Andrea, A., Demir, M., Llaudo, I., Purroy, C., Marjanovic, N., et al., 2022. Interferon-beta acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 55, 459-474.
    Garin, M.I., Chu, C.C., Golshayan, D., Cernuda-Morollon, E., Wait, R., Lechler, R.I., 2007. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058-2065.
    Gavin, M.A., Rasmussen, J.P., Fontenot, J.D., Vasta, V., Manganiello, V.C., Beavo, J.A., Rudensky, A.Y., 2007. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771-775.
    Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S., Noelle, R.J., 2005. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783-1786.
    Gonzalez, M.M., Bamidele, A.O., Svingen, P.A., Sagstetter, M.R., Smyrk, T.C., Gaballa, J.M., Hamdan, F.H., Kosinsky, R.L., Gibbons, H.R., Sun, Z., et al., 2021. BMI1 maintains the Treg epigenomic landscape to prevent inflammatory bowel disease. J. Clin. Invest. 131, e140755.
    Green, E.A., Gorelik, L., McGregor, C.M., Tran, E.H., Flavell, R.A., 2003. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. U. S. A. 100, 10878-10883.
    Grossman, W.J., Verbsky, J.W., Tollefsen, B.L., Kemper, C., Atkinson, J.P., Ley, T.J., 2004. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840-2848.
    Hanaoka, H., Nishimoto, T., Okazaki, Y., Takeuchi, T., Kuwana, M., 2020. A unique thymus-derived regulatory T cell subset associated with systemic lupus erythematosus. Arthritis Res. Ther. 22, 88.
    Hawrylowicz, C.M., O'Garra, A., 2005. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 5, 271-283.
    Hilchey, S.P., De, A., Rimsza, L.M., Bankert, R.B., Bernstein, S.H., 2007. Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+CD25- and CD4+CD25- T cells. J. Immunol. 178, 4051-4061.
    Ho, P., Cahir-McFarland, E., Fontenot, J.D., Lodie, T., Nada, A., Tang, Q., Turka, L.A., Bluestone, J.A., 2024. Harnessing regulatory T cells to establish immune tolerance. Sci. Transl. Med. 16, eadm8859.
    Hori, S., Nomura, T., Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
    Huang, J., Wang, L., Dahiya, S., Beier, U.H., Han, R., Samanta, A., Bergman, J., Sotomayor, E.M., Seto, E., Kozikowski, A.P., et al., 2017. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function. Sci. Rep. 7, 8626.
    Jin, S., Sun, S., Ling, H., Ma, J., Zhang, X., Xie, Z., Zhan, N., Zheng, W., Li, M., Qin, Y., et al., 2021. Protectin DX restores Treg/T(h)17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis. 12, 280.
    Joetham, A., Takeda, K., Taube, C., Miyahara, N., Matsubara, S., Koya, T., Rha, Y.H., Dakhama, A., Gelfand, E.W., 2007. Naturally occurring lung CD4(+)CD25(+) T cell regulation of airway allergic responses depends on IL-10 induction of TGF-beta. J. Immunol. 178, 1433-1442.
    Kagoya, Y., Saijo, H., Matsunaga, Y., Guo, T., Saso, K., Anczurowski, M., Wang, C.H., Sugata, K., Murata, K., Butler, M.O., et al., 2019. Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J. Autoimmun. 97, 10-21.
    Kearley, J., Barker, J.E., Robinson, D.S., Lloyd, C.M., 2005. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 202, 1539-1547.
    Khattri, R., Cox, T., Yasayko, S.A., Ramsdell, F., 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337-342.
    Kobie, J.J., Shah, P.R., Yang, L., Rebhahn, J.A., Fowell, D.J., Mosmann, T.R., 2006. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-adenosine monophosphate to adenosine. J. Immunol. 177, 6780-6786.
    Komander, D., Rape, M., 2012. The ubiquitin code. Annu. Rev. Biochem. 81, 203-229.
    Kulathu, Y., Komander, D., 2012. Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13, 508-523.
    Kursar, M., Koch, M., Mittrucker, H.W., Nouailles, G., Bonhagen, K., Kamradt, T., Kaufmann, S.H., 2007. Cutting Edge: Regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. Immunol. 178, 2661-2665.
    Kwon, H.S., Lim, H.W., Wu, J., Schnolzer, M., Verdin, E., Ott, M., 2012. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J. Immunol. 188, 2712-2721.
    Li, B., Samanta, A., Song, X., Iacono, K.T., Bembas, K., Tao, R., Basu, S., Riley, J.L., Hancock, W.W., Shen, Y., et al., 2007a. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. U. S. A. 104, 4571-4576.
    Li, M.O., Wan, Y.Y., Flavell, R.A., 2007b. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579-591.
    Li, Y., Lu, Y., Wang, S., Han, Z., Zhu, F., Ni, Y., Liang, R., Zhang, Y., Leng, Q., Wei, G., et al., 2016. USP21 prevents the generation of T-helper-1-like Treg cells. Nat. Commun. 7, 13559.
    Li, Y., Strick-Marchand, H., Lim, A.I., Ren, J., Masse-Ranson, G., Dan, L., Jouvion, G., Rogge, L., Lucas, S., Bin, L., et al., 2017. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nat. Commun. 8, 1762.
    Li, Z., Lin, F., Zhuo, C., Deng, G., Chen, Z., Yin, S., Gao, Z., Piccioni, M., Tsun, A., Cai, S., et al., 2014. PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J. Biol. Chem. 289, 26872-26881.
    Liang, B., Workman, C., Lee, J., Chew, C., Dale, B.M., Colonna, L., Flores, M., Li, N., Schweighoffer, E., Greenberg, S., et al., 2008. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916-5926.
    Lin, F., Luo, X., Tsun, A., Li, Z., Li, D., Li, B., 2015. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation. Int. Immunopharmacol. 28, 859-865.
    Liu, B., Salgado, O.C., Singh, S., Hippen, K.L., Maynard, J.C., Burlingame, A.L., Ball, L.E., Blazar, B.R., Farrar, M.A., Hogquist, K.A., et al., 2019. The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nat. Commun. 10, 354.
    Liu, Y., Li, D., Zhang, X., Xia, S., Qu, Y., Ling, X., Li, Y., Kong, X., Zhang, L., Cui, C.P., et al., 2024a. A protein sequence-based deep transfer learning framework for identifying human proteome-wide deubiquitinase-substrate interactions. Nat. Commun. 15, 4519.
    Liu, Y., Shan, F., Sun, Y., Kai, H., Cao, Y., Huang, M., Liu, J., Zhang, P., Zheng, Y., 2024b. Prognostic and immunotherapeutic potential of regulatory T cell-associated signature in ovarian cancer. J. Cell. Mol. Med. 28, e18248.
    Liu, Y., Wang, L., Han, R., Beier, U.H., Akimova, T., Bhatti, T., Xiao, H., Cole, P.A., Brindle, P.K., Hancock, W.W., 2014. Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol. Cell. Biol. 34, 3993-4007.
    Liu, Y., Wang, L., Predina, J., Han, R., Beier, U.H., Wang, L.C., Kapoor, V., Bhatti, T.R., Akimova, T., Singhal, S., et al., 2013. Inhibition of p300 impairs Foxp3(+) T regulatory cell function and promotes antitumor immunity. Nat. Med. 19, 1173-1177.
    Liu, Y.J., Tang, B., Wang, F.C., Tang, L., Lei, Y.Y., Luo, Y., Huang, S.J., Yang, M., Wu, L.Y., Wang, W., et al., 2020. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics 10, 5225-5241.
    Lu, L., Barbi, J., Pan, F., 2017. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 17, 703-717.
    Lu, Y., Kim, N.M., Jiang, Y.W., Zhang, H., Zheng, D., Zhu, F.X., Liang, R., Li, B., Xu, H.X., 2018. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br. J. Pharmacol. 175, 1085-1099.
    Luo, X., Nie, J., Wang, S., Chen, Z., Chen, W., Li, D., Hu, H., Li, B., 2016. Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 regulates the function of regulatory T cells. J. Biol. Chem. 291, 1201.
    Luo, Y., Xia, Y., Liu, D., Li, X., Li, H., Liu, J., Zhou, D., Dong, Y., Li, X., Qian, Y., et al., 2024. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 187, 4905-4925.
    Lynn, R.C., Weber, E.W., Sotillo, E., Gennert, D., Xu, P., Good, Z., Anbunathan, H., Lattin, J., Jones, R., Tieu, V., et al., 2019. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293-300.
    Ma, X., Cao, L., Raneri, M., Wang, H., Cao, Q., Zhao, Y., Bediaga, N.G., Naselli, G., Harrison, L.C., Hawthorne, W.J., et al., 2023. Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight 8, e162978.
    Mehana, N.A., Ghaiad, H.R., Hassan, M., Elsabagh, Y.A., Labib, S., Abd-Elmawla, M.A., 2022. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behcet's disease and systemic lupus erythematosus. Life Sci. 309, 120965.
    Mellor, A.L., Munn, D.H., 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762-774.
    Montauti, E., Weinberg, S.E., Chu, P., Chaudhuri, S., Mani, N.L., Iyer, R., Zhou, Y., Zhang, Y., Liu, C., Xin, C., et al., 2022. A deubiquitination module essential for T(reg) fitness in the tumor microenvironment. Sci. Adv. 8, eabo4116.
    Morawski, P.A., Mehra, P., Chen, C., Bhatti, T., Wells, A.D., 2013. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494-24502.
    Nagai, Y., Ji, M.Q., Zhu, F., Xiao, Y., Tanaka, Y., Kambayashi, T., Fujimoto, S., Goldberg, M.M., Zhang, H., Li, B., et al., 2019. PRMT5 associates with the FOXP3 homomer and when disabled enhances targeted p185(erbB2/neu) tumor immunotherapy. Front. Immunol. 10, 174.
    Nakahira, K., Morita, A., Kim, N.S., Yanagihara, I., 2013. Phosphorylation of FOXP3 by LCK downregulates MMP9 expression and represses cell invasion. PLoS ONE 8, e77099.
    Nakamura, K., Kitani, A., Strober, W., 2001. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J. Exp. Med. 194, 629-644.
    Ni, X., Kou, W., Gu, J., Wei, P., Wu, X., Peng, H., Tao, J., Yan, W., Yang, X., Lebid, A., et al., 2019. TRAF6 directs FOXP3 localization and facilitates regulatory T-cell function through K63-linked ubiquitination. EMBO J. 38, e99766.
    Nie, H., Zheng, Y., Li, R., Guo, T.B., He, D., Fang, L., Liu, X., Xiao, L., Chen, X., Wan, B., et al., 2013. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat. Med. 19, 322-328.
    Nie, P., Cao, Z., Yu, R., Dong, C., Zhang, W., Meng, Y., Zhang, H., Pan, Y., Tong, Z., Jiang, X., et al., 2024. Targeting p97-Npl4 interaction inhibits tumor T(reg) cell development to enhance tumor immunity. Nat. Immunol 25, 1623-1636.
    Niu, Q., Cai, B., Huang, Z.C., Shi, Y.Y., Wang, L.L., 2012. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol. Int. 32, 2731-2736.
    Nunez, N.G., Tosello Boari, J., Ramos, R.N., Richer, W., Cagnard, N., Anderfuhren, C.D., Niborski, L.L., Bigot, J., Meseure, D., De La Rochere, P., et al., 2020. Tumor invasion in draining lymph nodes is associated with Treg accumulation in breast cancer patients. Nat. Commun. 11, 3272.
    Pandiyan, P., Zheng, L., Ishihara, S., Reed, J., Lenardo, M.J., 2007. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353-1362.
    Park, T.Y., Jeon, J., Lee, N., Kim, J., Song, B., Kim, J.H., Lee, S.K., Liu, D., Cha, Y., Kim, M., et al., 2023. Co-transplantation of autologous T(reg) cells in a cell therapy for Parkinson's disease. Nature 619, 606-615.
    Pesenacker, A.M., Chen, V., Gillies, J., Speake, C., Marwaha, A.K., Sun, A., Chow, S., Tan, R., Elliott, T., Dutz, J.P., et al., 2019. Treg gene signatures predict and measure type 1 diabetes trajectory. JCI Insight 4, e123879.
    Qu, G., Chen, J., Li, Y., Yuan, Y., Liang, R., Li, B., 2022. Current status and perspectives of regulatory T cell-based therapy. J. Genet. Genomics 49, 599-611.
    Quandt, J., Arnovitz, S., Haghi, L., Woehlk, J., Mohsin, A., Okoreeh, M., Mathur, P.S., Emmanuel, A.O., Osman, A., Krishnan, M., et al., 2021. Wnt-beta-catenin activation epigenetically reprograms T(reg) cells in inflammatory bowel disease and dysplastic progression. Nat. Immunol. 22, 471-484.
    Rape, M., 2018. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59-70.
    Read, S., Malmstrom, V., Powrie, F., 2000. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295-302.
    Ren, X., Ye, F., Jiang, Z., Chu, Y., Xiong, S., Wang, Y., 2007. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ. 14, 2076-2084.
    Reyes-Turcu, F.E., Ventii, K.H., Wilkinson, K.D., 2009. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363-397.
    Rubtsov, Y.P., Rasmussen, J.P., Chi, E.Y., Fontenot, J., Castelli, L., Ye, X., Treuting, P., Siewe, L., Roers, A., Henderson, W.R., Jr., et al., 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546-558.
    Sadlon, T.J., Wilkinson, B.G., Pederson, S., Brown, C.Y., Bresatz, S., Gargett, T., Melville, E.L., Peng, K., D'Andrea, R.J., Glonek, G.G., et al., 2010. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J. Immunol. 185, 1071-1081.
    Saetzler, V., Riet, T., Schienke, A., Henschel, P., Freitag, K., Haake, A., Heppner, F.L., Buitrago-Molina, L.E., Noyan, F., Jaeckel, E., et al., 2023. Development of beta-amyloid-specific CAR-Tregs for the treatment of Alzheimer's disease. Cells 12, 2115.
    Saito, T., Nishikawa, H., Wada, H., Nagano, Y., Sugiyama, D., Atarashi, K., Maeda, Y., Hamaguchi, M., Ohkura, N., Sato, E., et al., 2016. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679-684.
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M., 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151-1164.
    Sakaguchi, S., Vignali, D.A., Rudensky, A.Y., Niec, R.E., Waldmann, H., 2013. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 13, 461-467.
    Sakaguchi, S., Wing, K., Yamaguchi, T., 2009. Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur. J. Immunol. 39, 2331-2336.
    Samanta, A., Li, B., Song, X., Bembas, K., Zhang, G., Katsumata, M., Saouaf, S.J., Wang, Q., Hancock, W.W., Shen, Y., et al., 2008. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc. Natl. Acad. Sci. U. S. A. 105, 14023-14027.
    Sarris, M., Andersen, K.G., Randow, F., Mayr, L., Betz, A.G., 2008. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402-413.
    Seif, F., Torki, Z., Zalpoor, H., Habibi, M., Pornour, M., 2023. Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: molecular and therapeutic perspectives. Mol. Ther. Oncolytics 28, 132-157.
    Serra, P., Amrani, A., Yamanouchi, J., Han, B., Thiessen, S., Utsugi, T., Verdaguer, J., Santamaria, P., 2003. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19, 877-889.
    Song, X., Li, B., Xiao, Y., Chen, C., Wang, Q., Liu, Y., Berezov, A., Xu, C., Gao, Y., Li, Z., et al., 2012. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep. 1, 665-675.
    Sterner, R.C., Sterner, R.M., 2021. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69.
    Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T., Whiteside, T.L., 2007. A unique subset of CD4+CD25+Foxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 13, 4345-4354.
    Stucchi, A., Maspes, F., Montee-Rodrigues, E., Fousteri, G., 2024. Engineered Treg cells: the heir to the throne of immunotherapy. J. Autoimmun. 144, 102986.
    Tadokoro, C.E., Shakhar, G., Shen, S., Ding, Y., Lino, A.C., Maraver, A., Lafaille, J.J., Dustin, M.L., 2006. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505-511.
    Tang, Q., Adams, J.Y., Tooley, A.J., Bi, M., Fife, B.T., Serra, P., Santamaria, P., Locksley, R.M., Krummel, M.F., Bluestone, J.A., 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83-92.
    Tang, Q., Leung, J., Peng, Y., Sanchez-Fueyo, A., Lozano, J.J., Lam, A., Lee, K., Greenland, J.R., Hellerstein, M., Fitch, M., et al., 2022. Selective decrease of donor-reactive T(regs) after liver transplantation limits T(reg) therapy for promoting allograft tolerance in humans. Sci. Transl. Med. 14, eabo2628.
    Tao, R., de Zoeten, E.F., Ozkaynak, E., Chen, C., Wang, L., Porrett, P.M., Li, B., Turka, L.A., Olson, E.N., Greene, M.I., et al., 2007. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13, 1299-1307.
    Tay, C., Tanaka, A., Sakaguchi, S., 2023. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 41, 450-465.
    Teh, C.E., Lalaoui, N., Jain, R., Policheni, A.N., Heinlein, M., Alvarez-Diaz, S., Sheridan, J.M., Rieser, E., Deuser, S., Darding, M., et al., 2016. Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat. Commun. 7, 13353.
    Togashi, Y., Shitara, K., Nishikawa, H., 2019. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356-371.
    van Loosdregt, J., Brunen, D., Fleskens, V., Pals, C.E., Lam, E.W., Coffer, P.J., 2011. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS ONE 6, e19047.
    van Loosdregt, J., Fleskens, V., Fu, J., Brenkman, A.B., Bekker, C.P., Pals, C.E., Meerding, J., Berkers, C.R., Barbi, J., Grone, A., et al., 2013. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259-271.
    van Loosdregt, J., Vercoulen, Y., Guichelaar, T., Gent, Y.Y., Beekman, J.M., van Beekum, O., Brenkman, A.B., Hijnen, D.J., Mutis, T., Kalkhoven, E., et al., 2010. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965-974.
    Vignali, D.A., Collison, L.W., Workman, C.J., 2008. How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532.
    Wang, A., Ding, L., Wu, Z., Ding, R., Teng, X.L., Wang, F., Hu, Z., Chen, L., Yu, X., Zou, Q., 2021. ZFP91 is required for the maintenance of regulatory T cell homeostasis and function. J. Exp. Med. 218, e20201217.
    Wang, A., Huang, H., Shi, J.H., Yu, X., Ding, R., Zhang, Y., Han, Q., Ni, Z.Y., Li, X., Zhao, R., et al., 2023a. USP47 inhibits m6A-dependent c-Myc translation to maintain regulatory T cell metabolic and functional homeostasis. J. Clin. Invest. 133, e169365.
    Wang, A., Yang, M., Liang, R., Zhu, F., Zhu, F., Liu, X., Han, Y., Lin, R., Wang, X., Li, D., et al., 2020. Mouse double minute 2 homolog-mediated ubiquitination facilitates forkhead box P3 stability and positively modulates human regulatory T cell function. Front. Immunol. 11, 1087.
    Wang, L., de Zoeten, E.F., Greene, M.I., Hancock, W.W., 2009. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat. Rev. Drug Discov. 8, 969-981.
    Wang, L., Kumar, S., Dahiya, S., Wang, F., Wu, J., Newick, K., Han, R., Samanta, A., Beier, U.H., Akimova, T., et al., 2016. Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine 13, 99-112.
    Wang, L., Liu, Y., Han, R., Beier, U.H., Bhatti, T.R., Akimova, T., Greene, M.I., Hiebert, S.W., Hancock, W.W., 2015. FOXP3(+) regulatory T cell development and function require histone/protein deacetylase 3. J. Clin. Invest. 125, 3304.
    Wang, Y., Zhang, Y., Su, S., Tamukong, P., Murali, R., Kim, H.L., 2023b. Stimulation of antitumor immunity by FoxP3-targeting PROTAC. Biomed. Pharmacother. 163, 114871.
    Xiao, Y., Nagai, Y., Deng, G., Ohtani, T., Zhu, Z., Zhou, Z., Zhang, H., Ji, M.Q., Lough, J.W., Samanta, A., et al., 2014. Dynamic interactions between TIP60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on TIP60. Cell Rep. 7, 1471-1480.
    Yang, H., Park, S.Y., Baek, H., Lee, C., Chung, G., Liu, X., Lee, J.H., Kim, B., Kwon, M., Choi, H., et al., 2022. Adoptive therapy with amyloid-beta specific regulatory T cells alleviates Alzheimer's disease. Theranostics 12, 7668-7680.
    Yang, J., Wei, P., Barbi, J., Huang, Q., Yang, E., Bai, Y., Nie, J., Gao, Y., Tao, J., Lu, Y., et al., 2020. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 21, e50308.
    Yang, X., Zhu, X., Sheng, J., Fu, Y., Nie, D., You, X., Chen, Y., Yang, X., Ling, Q., Zhang, H., et al., 2024. RNF213 promotes Treg cell differentiation by facilitating K63-linked ubiquitination and nuclear translocation of FOXO1. Nat. Commun. 15, 5961.
    You, M., Gao, Y., Fu, J., Xie, R., Zhu, Z., Hong, Z., Meng, L., Du, S., Liu, J., Wang, F.S., et al., 2023. Epigenetic regulation of HBV-specific tumor-infiltrating T cells in HBV-related HCC. Hepatology 78, 943-958.
    Yu, T., Yang, X., Fu, Q., Liang, J., Wu, X., Sheng, J., Chen, Y., Xiao, L., Wu, Y., Nie, D., et al., 2023. TRIM11 attenuates Treg cell differentiation by p62-selective autophagic degradation of AIM2. Cell Rep. 42, 113231.
    Zarek, P.E., Huang, C.T., Lutz, E.R., Kowalski, J., Horton, M.R., Linden, J., Drake, C.G., Powell, J.D., 2008. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood 111, 251-259.
    Zhang, J., Chen, C., Hou, X., Gao, Y., Lin, F., Yang, J., Gao, Z., Pan, L., Tao, L., Wen, C., et al., 2013. Identification of the E3 deubiquitinase ubiquitin-specific peptidase 21 (USP21) as a positive regulator of the transcription factor GATA3. J. Biol. Chem. 288, 9373-9382.
    Zhang, R., Miao, J., Zhang, K., Zhang, B., Luo, X., Sun, H., Zheng, Z., Zhu, P., 2022. Th1-like Treg cells are increased but deficient in function in rheumatoid arthritis. Front. Immunol. 13, 863753.
    Zhao, D.M., Thornton, A.M., DiPaolo, R.J., Shevach, E.M., 2006. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107, 3925-3932.
    Zheng, N., Shabek, N., 2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129-157.
    Zheng, Y., Huang, L., Ge, W., Yang, M., Ma, Y., Xie, G., Wang, W., Bian, B., Li, L., Nie, H., et al., 2017. Protein arginine methyltransferase 5 inhibition upregulates Foxp3(+) regulatory T cells frequency and function during the ulcerative colitis. Front. Immunol. 8, 596.
    Zhou, B., Zhang, M., Ma, H., Wang, Y., Qiu, J., Liu, Y., Lu, L., Li, T., Zhang, L., Huang, R., et al., 2024. Distinct palmitoylation of Foxp3 regulates the function of regulatory T cells via palmitoyltransferases. Cell. Mol. Immunol. 21, 787-789.
    Zhou, L., He, X., Cai, P., Li, T., Peng, R., Dang, J., Li, Y., Li, H., Huang, F., Shi, G., et al., 2021. Induced regulatory T cells suppress Tc1 cells through TGF-beta signaling to ameliorate STZ-induced type 1 diabetes mellitus. Cell. Mol. Immunol. 18, 698-710.
    Zhu, F., Yi, G., Liu, X., Zhu, F., Zhao, A., Wang, A., Zhu, R., Chen, Z., Zhao, B., Fang, S., et al., 2018. Ring finger protein 31-mediated atypical ubiquitination stabilizes forkhead box P3 and thereby stimulates regulatory T-cell function. J. Biol. Chem. 293, 20099-20111.
    Zhu, X., Wang, P., Zhan, X., Zhang, Y., Sheng, J., He, S., Chen, Y., Nie, D., You, X., Mai, H., et al., 2023. USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ. Cell. Mol. Immunol. 20, 252-263.
    Zi, C., He, L., Yao, H., Ren, Y., He, T., Gao, Y., 2022. Changes of Th17 cells, regulatory T cells, Treg/Th17, IL-17 and IL-10 in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Endocrine 76, 263-272.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return