9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

KDM2A and KDM2B protect a subset of CpG islands from DNA methylation

doi: 10.1016/j.jgg.2024.10.012
Funds:

We thank Dr. Xinyi Lu from Nankai University for the KDM2A antibody and Dr. Xudong Wu from Tianjin Medical University for the KDM2B antibody. This work was supported by the National Natural Science Foundation of China (32070607), the National Key Research and Development Program of China (2020YFA0804000), and the CAS Project for Young Scientists in Basic Research (YSBR-012).

  • Received Date: 2024-07-11
  • Accepted Date: 2024-10-31
  • Rev Recd Date: 2024-10-30
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-08
  • In the mammalian genome, most CpGs are methylated. However, CpGs within the CpG islands (CGIs) are largely unmethylated, which are important for gene expression regulation. The mechanism underlying the low methylation levels at CGIs remains largely elusive. KDM2 proteins (KDM2A and KDM2B) are H3K36me2 demethylases known to bind specifically at CGIs. Here, we report that depletion of each or both KDM2 proteins, or mutation of all their JmjC domains that harbor the H3K36me2 demethylation activity, leads to an increase in DNA methylation at selective CGIs. The Kdm2a/2b double knockout shows a stronger increase in DNA methylation compared with the single mutant of Kdm2a or Kdm2b, indicating that KDM2A and KDM2B redundantly regulate DNA methylation at CGIs. In addition, the increase of CGI DNA methylation upon mutations of KDM2 proteins is associated with the chromatin environment. Our findings reveal that KDM2A and KDM2B function redundantly in regulating DNA methylation at a subset of CGIs in an H3K36me2 demethylation-dependent manner.
  • loading
  • Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., et al., 2006. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532-538.
    Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al., 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326.
    Blackledge, N.P., Farcas, A.M., Kondo, T., King, H.W., McGouran, J.F., Hanssen, L.L., Ito, S., Cooper, S., Kondo, K., Koseki, Y., et al., 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445-1459.
    Blackledge, N.P., Zhou, J.C., Tolstorukov, M.Y., Farcas, A.M., Park, P.J.,Klose, R.J., 2010. CpG islands recruit a histone H3 lysine 36 demethylase. Mol. Cell 38, 179-190.
    Borgel, J., Tyl, M., Schiller, K., Pusztai, Z., Dooley, C.M., Deng, W., Wooding, C., White, R.J., Warnecke, T., Leonhardt, H., et al., 2017. KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1. Nucleic Acids Res. 45, 1114-1129.
    Boulard, M., Edwards, J.R.,Bestor, T.H., 2015. FBXL10 protects Polycomb-bound genes from hypermethylation. Nat. Genet. 47, 479-485.
    Chen, Z.,Zhang, Y., 2020. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 89, 135-158.
    Cheng, Z., Cheung, P., Kuo, A.J., Yukl, E.T., Wilmot, C.M., Gozani, O.,Patel, D.J., 2014. A molecular threading mechanism underlies jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes Dev. 28, 1758-1771.
    Clouaire, T., Webb, S., Skene, P., Illingworth, R., Kerr, A., Andrews, R., Lee, J.H., Skalnik, D.,Bird, A., 2012. Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev. 26, 1714-1728.
    Deaton, A.M.,Bird, A., 2011. CpG islands and the regulation of transcription. Genes Dev. 25, 1010-1022.
    Elhamamsy, A.R., 2017. Role of DNA methylation in imprinting disorders: an updated review. J. Assist. Reprod. Genet. 34, 549-562.
    Ewels, P., Magnusson, M., Lundin, S.,Kaller, M., 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048.
    Farcas, A.M., Blackledge, N.P., Sudbery, I., Long, H.K., McGouran, J.F., Rose, N.R., Lee, S., Sims, D., Cerase, A., Sheahan, T.W., et al., 2012. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. Elife 1, e00205.
    Feinberg, A.P.,Tycko, B., 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4, 143-153.
    Fukuda, T., Tokunaga, A., Sakamoto, R.,Yoshida, N., 2011. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46, 614-624.
    Goll, M.G., Bestor, T.H., 2005. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481-514.
    Grosswendt, S., Kretzmer, H., Smith, Z.D., Kumar, A.S., Hetzel, S., Wittler, L., Klages, S., Timmermann, B., Mukherji, S.,Meissner, A., 2020. Epigenetic regulator function through mouse gastrulation. Nature 584, 102-108.
    Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R.,Young, R.A., 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77-88.
    He, J., Kallin, E.M., Tsukada, Y.,Zhang, Y., 2008. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat. Struct. Mol. Biol. 15, 1169-1175.
    He, J., Shen, L., Wan, M., Taranova, O., Wu, H., Zhang, Y., 2013. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat. Cell Biol. 15, 373-384.
    Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M., et al., 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178-186.
    Jones, P.A.,Baylin, S.B., 2002. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415-428.
    Kawakami, E., Tokunaga, A., Ozawa, M., Sakamoto, R.,Yoshida, N., 2015. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech. Dev. 135, 31-42.
    Kawamura, Y.K., Ozonov, E.A., Papasaikas, P., Kondo, T., Nguyen, N.V., Stadler, M.B., Smallwood, S.A., Koseki, H.,Peters, A.H.F.M., 2024. Preventing cpg island hypermethylation in oocytes safeguards mouse development. bioRxiv, 2024.2005.2029.595726.
    Kim, D., Paggi, J.M., Park, C., Bennett, C.,Salzberg, S.L., 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907-915.
    Langmead, B.,Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    Lee, J.H.,Skalnik, D.G., 2005. CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J. Biol. Chem. 280, 41725-41731.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,Genome Project Data Processing, S., 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079.
    Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al., 2016. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558-562.
    Long, H.K., Blackledge, N.P.,Klose, R.J., 2013. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem. Soc. Trans. 41, 727-740.
    Love, M.I., Huber, W.,Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.
    Lu, F., Liu, Y., Jiang, L., Yamaguchi, S.,Zhang, Y., 2014. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103-2119.
    Manzo, M., Wirz, J., Ambrosi, C., Villasenor, R., Roschitzki, B.,Baubec, T., 2017. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. EMBO J. 36, 3421-3434.
    Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al., 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553-560.
    Ming, X., Zhang, Z., Zou, Z., Lv, C.,Zhu, B., 2020. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res. 30, 980-996.
    Noh, K.M., Allis, C.D.,Li, H., 2016. Reading between the Lines: "ADD"-ing histone and DNA methylation marks toward a new epigenetic "Sum". ACS Chem. Biol. 11, 554-563.
    Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S.P., Allis, C.D., et al., 2007. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714-717.
    Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T.,Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295.
    Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F.,Manke, T., 2016. DeepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160-W165.
    Saxonov, S., Berg, P.,Brutlag, D.L., 2006. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. U.S.A. 103, 1412-1417.
    Schultz, M.D., Schmitz, R.J.,Ecker, J.R., 2012. 'Leveling' the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583-585.
    Skvortsova, K., Masle-Farquhar, E., Luu, P.L., Song, J.Z., Qu, W., Zotenko, E., Gould, C.M., Du, Q., Peters, T.J., Colino-Sanguino, Y., et al., 2019. DNA hypermethylation encroachment at CpG island borders in cancer is predisposed by H3K4 monomethylation patterns. Cancer Cell 35, 297-314.
    Smith, Z.D.,Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204-220.
    Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., van Nimwegen, E., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., et al., 2011. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490-495.
    Streubel, G., Watson, A., Jammula, S.G., Scelfo, A., Fitzpatrick, D.J., Oliviero, G., McCole, R., Conway, E., Glancy, E., Negri, G.L., et al., 2018. The H3K36me2 methyltransferase Nsd1 demarcates PRC2-mediated H3K27me2 and H3K27me3 domains in embryonic stem cells. Mol. Cell 70, 371-379.
    Tanaka, Y., Okamoto, K., Teye, K., Umata, T., Yamagiwa, N., Suto, Y., Zhang, Y.,Tsuneoka, M., 2010. JmjC enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J. 29, 1510-1522.
    Thomson, J.P., Skene, P.J., Selfridge, J., Clouaire, T., Guy, J., Webb, S., Kerr, A.R., Deaton, A., Andrews, R., James, K.D., et al., 2010. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082-1086.
    Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P.,Zhang, Y., 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811-816.
    Turner, S.A.,Bracken, A.P., 2013. A "complex" issue: deciphering the role of variant PRC1 in ESCs. Cell Stem Cell 12, 145-146.
    Vacik, T., Ladinovic, D.,Raska, I., 2018. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 9, 431-441.
    Voo, K.S., Carlone, D.L., Jacobsen, B.M., Flodin, A.,Skalnik, D.G., 2000. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol. Cell Biol. 20, 2108-2121.
    Wang, Q., Yu, G., Ming, X., Xia, W.,Xie, W., 2020. Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat. Genet., 52, 828-839.
    Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, C., McGuire, J.T., Xu, X., Nikbakht, H., et al., 2019. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281-286.
    Wu, X., Johansen, J.V.,Helin, K., 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134-1146.
    Xu, W., Li, J., Rong, B., Zhao, B., Wang, M., Dai, R., Chen, Q., Liu, H., Gu, Z., Liu, S., et al., 2020. DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein cell 11, 150-154.
    Yuan, W., Xu, M., Huang, C., Liu, N., Chen, S.,Zhu, B., 2011. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983-7989.
    Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., et al., 2016. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557.
    Zhang, H., Liu, Y., Xie, Y., Zhu, Y., Liu, J.,Lu, F., 2022. H3K27me3 shapes DNA methylome by inhibiting UHRF1-mediated H3 ubiquitination. Sci. China Life Sci. 65, 1685-1700.
    Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., et al., 2010. Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res. 38, 4246-4253.
    Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., et al., 2016. Resetting epigenetic memory by reprogramming of Histone modifications in mammals. Mol. Cell 63, 1066-1079.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return