9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

Activation of γ-globin expression by a common variant disrupting IKAROS-binding motif in β-thalassemia

doi: 10.1016/j.jgg.2024.10.015
  • Received Date: 2024-08-04
  • Accepted Date: 2024-10-28
  • Rev Recd Date: 2024-10-27
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-08
  • Programmed silencing of γ-globin genes in adult erythropoiesis is mediated by several chromatin remodeling complexes, which determine the stage-specific genome architecture in this region. Identification of cis- or trans-acting mutations contributing to the diverse extent of fetal hemoglobin (Hb F) might illustrate the underlying mechanism of γ-β-globin switching. Here, we recruit a cohort of 1142 β-thalassemia patients and dissect the natural variants in the whole β-globin gene cluster through a targeted next-generation sequencing panel. A previously unreported SNP rs7948668, predicted to disrupt the binding motif of IKAROS as a key component of chromatin remodeling complexes, is identified to be significantly associated with higher levels of Hb F and age at onset. Gene-editing on this SNP leads to the elevation of Hb F in both HUDEP-2 and primary CD34+ cells while the extent of elevation is amplified in the context of β-thalassemia mutations, indicating epistasis effects of the SNP in the regulation of Hb F. Finally, we perform ChIP-qPCR and 4C assays to prove that this variant disrupts the binding motif of IKAROS, leading to enhanced competitiveness of HBG promoters to locus control regions. This study highlights the significance of common regulatory SNPs and provides potential targets for treating β-hemoglobinopathy.
  • loading
  • Affar, M., Bottardi, S., Quansah, N., Lemarie, M., Ramon, A.C., Affar, E.B., Milot, E., 2023. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ. doi: 10.1038/s41418-023-01212-2.
    Antoniani, C., Meneghini, V., Lattanzi, A., Felix, T., Romano, O., Magrin, E., Weber, L., Pavani, G. l., Hoss, S., Kurita, R., et al., 2018. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Blood 131, 1960-1973.
    Antoniou, P., Hardouin, G., Martinucci, P., Frati, G., Felix, T., Chalumeau, A., Fontana, L., Martin, J., Masson, C., Brusson, M., et al., 2022. Base-editing-mediated dissection of a γ-globin cis-regulatory element for the therapeutic reactivation of fetal hemoglobin expression. Nat. Commun. 13, 6618.
    Asano, H., Li, X. S., Stamatoyannopoulos, G., 1999. FKLF, a novel Kruppel-like factor that activates human embryonic and fetal beta-like globin genes. Mol. Cell Biol. 19, 3571-3579.
    Bank, A., 2006. Regulation of human fetal hemoglobin: new players, new complexities. Blood 107, 435-443.
    Bank, A., O'Neill, D., Lopez, R., Pulte, D., Ward, M., Mantha, S., Richardson, C., 2005. Role of intergenic human gamma-delta-globin sequences in human hemoglobin switching and reactivation of fetal hemoglobin in adult erythroid cells. Ann. N. Y. Acad. Sci. 1054, 48-54.
    Bauer, D.E., Kamran, S.C., Orkin, S.H., 2012. Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Blood 120, 2945-2953.
    Bauer, D.E., Orkin, S.H., 2015. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr. Opin. Genet. Dev. 33, 62-70.
    Bottardi, S., Ross, J., Bourgoin, V., Fotouhi-Ardakani, N., Affar el, B., Trudel, M., Milot, E., 2009. Ikaros and GATA-1 combinatorial effect is required for silencing of human gamma-globin genes. Mol. Cell Biol. 29, 1526-1537.
    Caulier, A.L., Sankaran, V.G., 2022. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 139, 2450-2459.
    Chen, D., Zuo, Y., Zhang, X., Ye, Y., Bao, X., Huang, H., Tepakhan, W., Wang, L., Ju, J., Chen, G., et al., 2017. A genetic variant ameliorates β-thalassemia severity by epigenetic-mediated elevation of human fetal hemoglobin expression. Am. J. Hum. Genet. 101, 130-138.
    Chen, T., Chen X, Zhang S, Zhu J, Tang B, Wang A, Dong L, Zhang Z, Yu C, Sun Y. et al., 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Dev. Reprod. Biol. doi: 10.1016/j.gpb.2021.08.001.
    Dai, Y., Chen, T., Ijaz, H., Cho, E.H., Steinberg, M.H., 2017. SIRT1 activates the expression of fetal hemoglobin genes. Am. J. Hematol. 92, 1177-1186.
    Database Resources of the National Genomics Data Center, China national center for bioinformation in 2024. 2024. Nucleic Acids Res. 52, D18-D32.
    Ferreira, R., Ohneda, K., Yamamoto, M., Philipsen, S., 2005. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol. Cell Biol. 25, 1215-1227.
    Galanello, R., Sanna, S., Perseu, L., Sollaino, M.C., Satta, S., Lai, M.E., Barella, S., Uda, M., Usala, G., Abecasi,s G.R., et al., 2009. Amelioration of Sardinian beta0 thalassemia by genetic modifiers. Blood 114, 3935-3937.
    Gilman, J.G., Huisman, T.H., 1985. DNA sequence variation associated with elevated fetal G gamma globin production. Blood 66, 783-787.
    Gong, Y., Zhang, X., Zhang, Q., Zhang, Y., Ye, Y., Yu, W., Shao, C., Yan, T., Huang, J., Zhong, J., et al., 2021. A natural DNMT1 mutation elevates the fetal hemoglobin level via epigenetic derepression of the γ-globin gene in β-thalassemia. Blood 137, 1652-1657.
    Gupta, P., Goswami, S.G, Kumari, G., Saravanakumar, V., Bhargava, N., Rai, A.B., Singh, P., Bhoyar, R.C., Arvinden, V.R., Gunda, P,. et al., 2024. Development of pathophysiologically relevant models of sickle cell disease and β-thalassemia for therapeutic studies. Nat. Commun. 15, 1794.
    Keys, J.R, Tallack, M.R, Zhan, Y, Papathanasiou, P, Goodnow, C.C, Gaensler, K.M, Crossley, M, Dekker, J, Perkins, A.C., 2008. A mechanism for Ikaros regulation of human globin gene switching. Br. J. Haematol. 141, 398-406.
    Krijger, P.H.L., Geeven, G., Bianchi, V., Hilvering, C.R.E., de Laat, W., 2020. 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170, 17-32.
    Liu, D., Zhang, X., Yu, L., Cai, R., Ma, X., Zheng, C., Zhou, Y., Liu, Q., Wei, X., Lin L., et al., 2014. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood 124, 803-811.
    Liu, N., Hargreaves, V.V., Zhu, Q., Kurland, J.V., Hong, J., Kim W., Sher, F., Macias-Trevino, C., Rogers, J.M., Kurita, R., et al., 2018. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430-442.
    Liu, N., Xu, S., Yao, Q., Zhu, Q., Kai, Y., Hsu, J.Y., Sakon, P., Pinello, L., Yuan, G.C., Bauer, D.E., et al., 2021. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat. Genet. 53, 511-520.
    Lu, D., Xu, Z., Peng, Z., Yang, Y., Song, B., Xiong, Z., Ma, Z., Guan, H., Chen, B., Nakamura,Y., et al., 2022. Induction of fetal hemoglobin by introducing natural hereditary persistence of fetal hemoglobin mutations in the γ-globin gene promoters for genome editing therapies for β-thalassemia. Front. Genet. 13, 881937.
    Martyn, G.E., Wienert, B., Kurita, R., Nakamura, Y., Quinlan, K. G.R., Crossley, M., 2019. A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood 133, 852-856.
    Martyn, G.E., Wienert, B., Yang, L., Shah, M., Norton, L.J., Burdach, J., Kurita, R., Nakamura, Y., Pearson, RC.M., Funnell, AP.W., et al., 2018. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat. Genet. 50, 498-503.
    O'Neill, D., Bornschlegel, K., Flamm, M., Castle, M., Bank, A., 1991. A DNA-binding factor in adult hematopoietic cells interacts with a pyrimidine-rich domain upstream from the human delta-globin gene. Proc. Natl. Acad. Sci. U.S.A. 88, 8953-8957.
    O'Neill, D., Yang, J., Erdjument-Bromage, H., Bornschlegel, K., Tempst, P., Bank, A., 1999. Tissue-specific and developmental stage-specific DNA binding by a mammalian SWI/SNF complex associated with human fetal-to-adult globin gene switching. Proc. Natl. Acad. Sci. U.S.A. 96, 349-354.
    Origa, R., 2017. β-Thalassemia. Genet. Med. 19, 609-619.
    Phillips, J.D., Steensma, D.P., Pulsipher, M.A., Spangrude, G.J., Kushner, J.P., 2007. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 109, 2618-2621.
    Psatha, N., Georgakopoulou, A., Li C., Nandakumar, V., Georgolopoulos, G., Acosta, R., Paschoudi, K., Nelson, J., Chee, D., Athanasiadou, A., 2021. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 138, 1540-1553.
    Sackton, T.B., Hartl, D.L., 2016. Genotypic context and epistasis in individuals and populations. Cell 166, 279-287.
    Sankaran, V.G., Menne, T.F., Xu J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., Orkin, S.H., 2008. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839-1842.
    Sankaran, V.G., Orkin, S.H., 2013. The switch from fetal to adult hemoglobin. Cold. Spring Harb. Perspect. Med. 3, a011643.
    Sankaran, V.G., Weiss, M.J., 2015. Anemia: progress in molecular mechanisms and therapies. Nat. Med. 21, 221-230.
    Sankaran, V.G., Xu, J., Byron, R., Greisman, H.A., Fisher, C., Weatherall, D.J., Sabath, D.E., Groudine, M., Orkin, S.H., Premawardhena, A., et al., 2011. A functional element necessary for fetal hemoglobin silencing. N. Engl. J. Med. 365, 807-814.
    Steinberg, M.H., Sebastiani, P., 2012. Genetic modifiers of sickle cell disease. Am. J. Hematol. 87, 795-803.
    Tanabe, O., Katsuoka, F., Campbell, A.D., Song, W., Yamamoto, M., Tanimoto, K., Engel, J.D., 2002. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J. 21, 3434-3442.
    Thanuthanakhun, N., Nuntakarn, L., Sampattavanich, S., Anurathapan, U., Phuphanitcharoenkun, S., Pornpaiboonstid, S., Borwornpinyo S., Hongeng, S., 2017. Investigation of FoxO3 dynamics during erythroblast development in β-thalassemia major. PLoS One 12, e0187610.
    Thein, S.L., Wainscoat, J.S., Sampietro, M., Old, J.M., Cappellini, D., Fiorelli, G., Modell B., Weatherall, D.J., 1987. Association of thalassaemia intermedia with a beta-globin gene haplotype. Br. J. Haematol. 65, 367-373.
    Topfer, S.K., Feng R., Huang, P., Ly L.C., Martyn, G.E., Blobel, G.A., Weiss, M.J., Quinlan, K.G.R., Crossley, M., 2022. Disrupting the adult globin promoter alleviates promoter competition and reactivates fetal globin gene expression. Blood 139, 2107-2118.
    Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V.G., Chen, W., Usala, G., Busonero, F., Maschio, A., Albai, G., et al., 2008. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. U.S.A. 105, 1620-1625.
    Viprakasit, V., Tyan, P., Rodmai, S., Taher, A.T., 2014. Identification and key management of non-transfusion-dependent thalassaemia patients: not a rare but potentially under-recognised condition. Orphanet J. Rare Dis. 9, 131.
    Wang, X., Thein, S.L., 2018. Switching from fetal to adult hemoglobin. Nat. Genet. 50, 478-480.
    Wienert, B., Funnell, A.P., Norton, L.J., Pearson, R.C., Wilkinson-White, L.E., Lester, K., Vadolas, J., Porteus, M.H., Matthews, J.M., Quinlan, K.G., et al., 2015. Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin. Nat. Commun. 6, 7085.
    Wienert, B., Martyn, G. E., Kurita, R., Nakamura, Y., Quinlan, K. G. R., Crossley, M., 2017. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood 130, 803-807.
    Zakaria, N.A., Islam, M.A., Abdullah, W.Z., Bahar, R., Mohamed Yusoff, A.A., Abdul Wahab, R., Shamsuddin, S., Johan, M.F., 2021. Epigenetic insights and potential modifiers as therapeutic targets in β-thalassemia. Biomolecules 11,755.
    Zhou, W., Zhao, Q., Sutton, R., Cumming, H., Wang, X., Cerruti, L., Hall, M., Wu, R., Cunningham, J.M., Jane, S.M., 2004. The role of p22 NF-E4 in human globin gene switching. J. Biol. Chem. 279, 26227-26232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return