9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 1
Jan.  2025
Turn off MathJax
Article Contents

Zebrafish cartilage development atlas generated by longitudinal in vivo imaging

doi: 10.1016/j.jgg.2024.11.003
Funds:

This work was supported by the National Science and Technology Innovation 2030 Major Program of the Ministry of Science and Technology (2021ZD0204500 and 2021ZD0204502 to J. Du), and Creative Research Groups (32321003 to J. Du) of the National Natural Science Foundation of China.

  • Received Date: 2024-05-27
  • Accepted Date: 2024-11-07
  • Rev Recd Date: 2024-11-05
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-15
  • loading
  • Antonellis, A., Huynh, J.L., Lee-Lin, S.-Q., Vinton, R.M., Renaud, G., Loftus, S.K., Elliot, G., Wolfsberg, T.G., Green, E.D., McCallion, A.S., et al., 2008. Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet. 4, e1000174.
    Barske, L., Askary, A., Zuniga, E., Balczerski, B., Bump, P., Nichols, J.T., Crump, J.G., 2016. Competition between Jagged-Notch and endothelin1 signaling selectively restricts cartilage formation in the zebrafish upper face. PLoS Genet. 12, e1005967.
    Borkowski, P., 2024. Directional sensitivity of bone conduction stimulation on the otic capsule in a finite element model of the human temporal bone. Sci. Rep. 14, 13768.
    Giovannone, D., Paul, S., Schindler, S., Arata, C., Farmer, D.J.T., Patel, P., Smeeton, J., Crump, J.G., 2019. Programmed conversion of hypertrophic chondrocytes into osteoblasts and marrow adipocytes within zebrafish bones. ELife 8, e42736.
    Hawkins, M.B., Henke, K., Harris, M.P., 2021. Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell 184, e13.
    Kang, J.S., Oohashi, T., Kawakami, Y., Bekku, Y., Izpisua Belmonte, J.C., Ninomiya, Y., 2004. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech. Dev. 121, 301-312.
    Krishnan, Y., Grodzinsky, A.J., 2018. Cartilage diseases. Matrix Biol. 71-72, 51-69.
    Li, J., Zhang, B.-B., Ren, Y.-G., Gu, S.-Y., Xiang, Y.-H., Du, J.-L., 2015. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res. 25, 634-637.
    Liu, P., Du, J.-L., He, C., 2013. Developmental pruning of early-stage myelin segments during CNS myelination in vivo. Cell Res. 23, 962-964.
    Rambeau, P., Faure, E., Theron, A., Avierinos, J.-F., Jopling, C., Zaffran, S., Faucherre, A., 2017. Reduced aggrecan expression affects cardiac outflow tract development in zebrafish and is associated with bicuspid aortic valve disease in humans. Int. J. Cardiol. 249, 340-343.
    Watanabe, H., Yamada, Y., 2002. Chondrodysplasia of gene knockout mice for aggrecan and link protein. Glycoconj. J. 19, 269-273.
    Watanabe, H., Yamada, Y., Kimata, K., 1998. Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J. Biochem. 124, 687-693.
    Wilusz, R.E., Sanchez-Adams, J., Guilak, F., 2014. The structure and function ofthe pericellular matrix of articular cartilage. Matrix Biol. 39, 25-32.
    Yuan, Y., Chai, Y., 2019. Regulatory mechanisms of jaw bone and tooth development. Curr. Top. Dev. Biol. 133, 91-118.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return