9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

Wnt2bb signaling promotes pharyngeal chondrogenic precursor proliferation and chondrocyte maturation by activating Yap expression in zebrafish

doi: 10.1016/j.jgg.2024.11.006
  • Received Date: 2024-07-21
  • Accepted Date: 2024-11-12
  • Rev Recd Date: 2024-11-11
  • Available Online: 2025-07-11
  • Publish Date: 2024-11-19
  • Pharyngeal cartilage morphogenesis is crucial for the formation of craniofacial structures. Cranial neural crest cells are specified at the neural plate border, migrate to pharyngeal arches, and differentiate into pharyngeal chondrocytes, which subsequently flatten, elongate, and stack like coins during maturation. Although the developmental processes prior to chondrocyte maturation have been extensively studied, their subsequent changes in morphology and organization remain largely elusive. Here, we show that wnt2bb is expressed in the pharyngeal ectoderm adjacent to the chondrogenic precursor cells in zebrafish. Inactivation of Wnt2bb leads to a reduction in nuclear β-catenin, which impairs chondrogenic precursor proliferation and disrupts chondrocyte morphogenesis and organization, eventually causing a severe shrinkage of pharyngeal cartilages. Moreover, the decrease of β-catenin in wnt2bb-/- mutants is accompanied by the reduction of Yap expression. Reactivation of Yap can restore the proliferation of chondrocyte progenitors as well as the proper size, shape, and stacking of pharyngeal chondrocytes. Our findings suggest that Wnt/β-catenin signaling promotes Yap expression to regulate pharyngeal cartilage formation in zebrafish.
  • loading
  • Ahrens, M.J., Li, Y.W., Jiang, H.M., Dudley, A.T., 2009. Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins. Development 136, 3463-3474.
    Aszodi, A., Hunziker, E.B., Brakebusch, C., Fassler, R., 2003. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17, 2465-2479.
    Azzolin, L., Panciera, T., Soligo, S., Enzo, E., Bicciato, S., Dupont, S., Bresolin, S., Frasson, C., Basso, G., Guzzardo, V., et al., 2014. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158, 157-170.
    Bienvenu, F., Jirawatnotai, S., Elias, J.E., Meyer, C.A., Mizeracka, K., Marson, A., Frampton, G.M., Cole, M.F., Odom, D.T., Odajima, J., et al., 2010. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463, 374-378.
    Brunt, L.H., Begg, K., Kague, E., Cross, S., Hammond, C.L., 2017. Wnt signalling controls the response to mechanical loading during zebrafish joint development. Development 144, 2798-2809.
    Clevers, H., 2006. Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480.
    Deng, Y.J., Wu, A.L., Li, P.S., Li, G., Qin, L., Song, H., Mak, K.K., 2016. Yap1 Regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Rep. 14, 2224-2237.
    Dodds, G.S., 1930. Row formation and other types of arrangement of cartilage cells in endochondral ossification. Anat Rec. 46, 385-399.
    Dranow, D.B., Le Pabic, P., Schilling, T.F., 2023. The non-canonical Wnt receptor Ror2 is required for cartilage cell polarity and morphogenesis of the craniofacial skeleton in zebrafish. Development 150, dev201273.
    Fan, F.Q., He, Z.X., Kong, L.L., Chen, Q.H., Yuan, Q., Zhang, S.H., Ye, J.J., Liu, H., Sun, X.F., Geng, J., et al., 2016. Pharmacological targeting of kinases MST1 and MST2 augments tissue repair and regeneration. Sci. Transl. Med. 8, 352ra108.
    Fu, M.Y., Hu, Y., Lan, T.X., Guan, K.L., Luo, T., Luo, M., 2022. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Target. Ther. 7, 376.
    Galea, G.L., Zein, M.R., Allen, S., Francis-West, P., 2021. Making and shaping endochondral and intramembranous bones. Dev. Dynam. 250, 414-449.
    Gao, B., Song, H., Bishop, K., Elliot, G., Garrett, L., English, M.A., Andre, P., Robinson, J., Sood, R., Minami, Y., et al., 2011. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev. Cell 20, 163-176.
    Grashoff, C., Aszodi, A., Sakai, T., Hunziker, E.B., Fassler, R., 2003. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep. 4, 432-438.
    Grimsrud, C.D., Romano, P.R., D'Souza, M., Puzas, J.E., Schwarz, E.M., Reynolds, P.R., Roiser, R.N., O'Keefe, R.J., 2001. BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J. Orthopaed. Res. 19, 18-25.
    Guo, X., Day, T.F., Jiang, X., Garrett-Beal, L., Topol, L., Yang, Y., 2004. Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404-2417.
    Hansen, C.G., Ng, Y.L.D., Lam, W.L.M., Plouffe, S.W., Guan, K.L., 2015. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res. 25, 1299-1313.
    Hartmann, C., Tabin, C.J., 2000. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127, 3141-3159.
    Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A., Nishida, E., 2012. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 31, 1109-1122.
    Kato, K., Bhattaram, P., Penzo-Mendez, A., Gadi, A., Lefebvre, V., 2015. SOXC transcription factors induce cartilage growth plate formation in mouse embryos by promoting noncanonical WNT signaling. J. Bone Miner. Res. 30, 1560-1571.
    Killaars, A.R., Walker, C.J., Anseth, K.S., 2020. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl. Acad. Sci U. S. A. 117, 21258-21266.
    Kimmel, C.B., Miller, C.T., Keynes, R.J., 2001. Neural crest patterning and the evolution of the jaw. J. Anat. 199, 105-120.
    Kim, M., Jho, E.H., 2014. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep. 47, 540-545.
    Komiya, Y., Habas, R., 2008. Wnt signal transduction pathways. Organogenesis 4, 68-75.
    Konsavage, W.M., Jr., Kyler, S.L., Rennoll, S.A., Jin, G., Yochum, G.S., 2012. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem. 287, 11730-11739.
    Konsavage, W.M., Yochum, G.S., 2013. Intersection of Hippo/YAP and Wnt/-catenin signaling pathways. Acta. Bioch. Bioph. Sin. 45, 71-79.
    Kozhemyakina, E., Lassar, A.B., Zelzer, E., 2015. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 142, 817-831.
    Ling, I.T.C., Rochard, L., Liao, E.C., 2017. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification. Dev. Biol. 421, 219-232.
    Liu, T.Y., Zhou, L.L., Yang, K., Iwasawa, K., Kadekaro, A.L., Takebe, T., Andl, T., Zhang, Y.H., 2019. The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduct. Target. Ther. 4, 63.
    Li, Y.W., Dudley, A., 2009. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Dev. Biol. 331, 442-442.
    Lu, W.G., Yamamoto, V., Ortega, B., Baltimore, D., 2004. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97-108.
    Mackie, E.J., Ahmed, Y.A., Tatarczuch, L., Chen, K.S., Mirams, M., 2008. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40, 46-62.
    Martik, M.L., Bronner, M.E., 2021. Riding the crest to get a head: neural crest evolution in vertebrates. Nat. Rev. Neurosci. 22, 616-626.
    Ma, Y., Zheng, W., Chen, H., Shao, X., Lin, P., Liu, X., Li, X., Ye, H., 2018. Glucosamine promotes chondrocyte proliferation via the Wnt/beta-catenin signaling pathway. Int. J. Mol. Med. 42, 61-70.
    Minina, E., Kreschel, C., Naski, M.C., Ornitz, D.M., Vortkamp, A., 2002. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell. 3, 439-449.
    Mugahid, D., Kalocsay, M., Liu, X.L., Gruver, J.S., Peshkin, L., Kirschner, M.W., 2020. YAP regulates cell size and growth dynamics via non-cell autonomous mediators. Elife 9, e53404.
    Niehrs, C., 2012. The complex world of WNT receptor signalling. Nat. Rev. Mol. Cell Biol. 13, 767-779.
    Park, J., Jia, S.Y., Salter, D., Bagnaninchi, P., Hansen, C.G., 2022. The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J. 41, e108719.
    Perez-Gonzalez, N.A., Rochman, N.D., Yao, K., Tao, J.X., Le, M.T.T., Flanaryi, S., Sablichi, L., Toler, B., Crentsil, E., Takaesu, F., et al., 2019. YAP and TAZ regulate cell volume. J. Cell Biol. 218, 3472-3488.
    Powell, D.R., Hernandez-Lagunas, L., LaMonica, K., Artinger, K.B., 2013. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 140, 3445-3455.
    Range, R.C., Angerer, R.C., Angerer, L.M., 2013. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol. 11, e1001467.
    Rolfe, R.A., Nowlan, N.C., Kenny, E.M., Cormican, P., Morris, D.W., Prendergast, P.J., Kelly, D., Murphy, P., 2014. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genomics 15, 48.
    Rolfe, R.A., Shea, C.A., Singh, P.N.P., Bandyopadhyay, A., Murphy, P., 2018. Investigating the mechanistic basis of biomechanical input controlling skeletal development: exploring the interplay with Wnt signalling at the joint. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170329.
    Rozenblatt-Rosen, O., Mosonego-Ornan, E., Sadot, E., Madar-Shapiro, L., Sheinin, Y., Ginsberg, D., Yayon, A., 2002. Induction of chondrocyte growth arrest by FGF: transcriptional and cytoskeletal alterations. J. Cell Sci. 115, 553-562.
    Sahni, M., Ambrosetti, D.C., Mansukhani, A., Gertner, R., Levy, D., Basilico, C., 1999. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 13, 1361-1366.
    Santos-Ledo, A., Garcia-Macia, M., Campbell, P.D., Gronska, M., Marlow, F.L., 2017. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet. 13, e1006918.
    Shalhout, S.Z., Yang, P.Y., Grzelak, E.M., Nutsch, K., Shao, S., Zambaldo, C., Iaconelli, J., Ibrahim, L., Stanton, C., Chadwick, S.R., et al., 2021. YAP-dependent proliferation by a small molecule targeting annexin A2. Nat. Chem. Biol. 17, 767-775.
    Sherr, C.J., Roberts, J.M., 2004. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18, 2699-2711.
    Shimizu, H., Yokoyama, S., Asahara, H., 2007. Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. Dev. Growth Differ. 49, 449-454.
    Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., Ben-Ze'ev, A., 1999. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 5522-5527.
    Shu, B., Zhang, M., Xie, R., Wang, M.N., Jin, H.T., Hou, W., Tang, D.Z., Harris, S.E., Mishina, Y., O'Keefe, R.J., et., 2011. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell Sci. 124, 3428-3440.
    Shum, L., Nuckolls, G., 2002. The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106.
    Shwartz, Y., Farkas, Z., Stern, T., Aszodi, A., Zelzer, E., 2012. Muscle contraction controls skeletal morphogenesis through regulation of chondrocyte convergent extension. Dev. Biol. 370, 154-163.
    Sisson, B.E., Dale, R.M., Mui, S.R., Topczewska, J.M., Topczewski, J., 2015. A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis. Mech. Dev. 138, 279-290.
    Tao, J.Y., Calvisi, D.F., Ranganathan, S., Cigliano, A., Zhou, L.L., Singh, S., Jiang, L.J., Fan, B.A., Terracciano, L., Armeanu, E.S., et al., 2014. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology 147, 690-701.
    Tao, W.K., Pennica, D., Xu, L.F., Kalejta, R.F., Levine, A.J., 2001. Wrch1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev. 15, 1796-1807.
    Tetsu, O., McCormick, F., 1999. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426.
    Tseng, A.S., Engel, F.B., Keating, M.T., 2006. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem. Biol. 13, 957-963.
    Unlu, G., Qi, X., Gamazon, E.R., Melville, D.B., Patel, N., Rushing, A.R., Hashem, M., Al-Faifi, A., Chen, R., Li, B., et al., 2020. Phenome-based approach identifies RIC1-linked Mendelian syndrome through zebrafish models, biobank associations and clinical studies. Nat. Med. 26, 98-109.
    Vanyai, H.K., Prin, F., Guillermin, O., Marzook, B., Boeing, S., Howson, A., Saunders, R.E., Snoeks, T., Howell, M., Mohun, T.J., et al., 2020. Control of skeletal morphogenesis by the Hippo-YAP/TAZ pathway. Development 147, dev187187.
    Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., Tabin, C.J., 1996. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613-622.
    Wang, C., Zhu, X.Y., Feng, W.W., Yu, Y.H., Jeong, K.J., Guo, W., Lu, Y.L., Mills, G.B., 2016. Verteporfin inhibits YAP function through up-regulating 14-3-3σ sequestering YAP in the cytoplasm. Am. J. Cancer Res. 6, 27-37.
    Wei, S., Dai, M.M., Liu, Z.T., Ma, Y.Q., Shang, H.Q., Cao, Y., Wang, Q., 2017. The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Res. 27, 202-225.
    Yang, S., Ning, G., Hou, Y., Cao, Y., Xu, J., Wu, J., Zhang, T., Wang, Q., 2022. Myoneurin regulates BMP signaling by competing with Ppm1a for Smad binding. iScience 25, 104495.
    Yokoyama, Y., Kameo, Y., Sunaga, J., Maki, K., Adachi, T., 2024. Chondrocyte hypertrophy in the growth plate promotes stress anisotropy affecting long bone development through chondrocyte column formation. Bone 182, 117055.
    Yu, F.Y., Yu, C.H., Li, F.F., Zuo, Y.Q., Wang, Y.T., Yao, L., Wu, C.Z., Wang, C.L., Ye, L., 2021. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 6, 307.
    Yu, F.X., Zhao, B., Guan, K.L., 2015. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828.
    Zhang, C., Zhu, H.Y., Ren, X.R., Gao, B., Cheng, B., Liu, S.B., Sha, B.Y., Li, Z.Q., Zhang, Z., Lv, Y., et al., 2021. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat. Commun. 12, 6229.
    Zhang, M., Liu, J., Mao, A., Ning, G., Cao, Y., Zhang, W., Wang, Q., 2023. Tmem88 confines ectodermal Wnt2bb signaling in pharyngeal arch artery progenitors for balancing cell cycle progression and cell fate decision. Nat. Cardiovasc. Res. 2, 234-250.
    Zhu, J., Fu, Q.W., Shao, J.H., Peng, J.H., Qian, Q.R., Zhou, Y.Q., Chen, Y., 2021. Over-expression of MEG3 promotes differentiation of bone marrow mesenchymal stem cells into chondrocytes by regulating miR-129-5p/RUNX1 axis. Cell Cycle 20, 96-111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return