9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 2
Feb.  2025
Turn off MathJax
Article Contents

Genome-wide association analysis reveals regulatory genes for the metabolite synthesis of 2-acetyl-1-pyrroline in aromatic coconut (Cocos nucifera L.)

doi: 10.1016/j.jgg.2024.12.002
  • Received Date: 2024-09-04
  • Accepted Date: 2024-12-02
  • Rev Recd Date: 2024-11-30
  • Available Online: 2025-07-11
  • Publish Date: 2024-12-13
  • Coconut (Cocos nucifera L.) is a key tropical economic tree valued for its fruit flavor, particularly 2-acetyl-1-pyrroline (2AP), a vital aroma metabolite. To enhance high-aromatic coconut breeding efforts, it is essential to deeply understand the hereditary factors governing the production of 2AP. In this study, a genome-wide association analysis identifies 32 loci that exhibit significant associations with 2AP content based on single nucleotide polymorphism (SNP) variations from 168 aromatic coconut germplasm resources. Transcriptome analysis then pinpoints 22 candidate genes near significant loci involved in 2AP metabolism. Proteins encoded by these genes are involved in amino acid metabolism, glycolysis, and secondary metabolism. Among these, Asparagine synthetase coding gene ASN1, Gamma-glutamylcysteine synthetase coding gene GSH1, and UbiA prenyltransferase coding gene UBIA are enriched in the linkage region constructed by significant locus Chr04_61490504. In particular, the SNP mutation of CnASN1 leads to amino acid changes in the functional region of the coding protein, potentially resulting in differences in 2AP content among haplotype populations. Identifying variations in related candidate genes, particularly the gene CnASN1, provides molecular markers closely associated with 2AP synthesis for coconut breeding and offers further insights into the metabolic mechanisms of 2AP.
  • loading
  • Baldwin, E.A., Goodner, K., Plotto, A., 2008. Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. J. Food Sci. 73, 294-307.
    Bradbury, L.M.T., Gillies, S.A., Brushett, D.J., Waters, D.L., Henry, R.J., 2008. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol. Biol. 68, 439-449.
    Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23, 2633-2635.
    Buttery, R.G., Ling, L.C., Juliano, B.O., Turnbaugh, J.G., 1983. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 31, 823-826.
    Cao, B., Luo, H., Luo, T., Li, N., Shao, K., Wu, K., Sahu, S.K., Li, F., Lin, C., 2023. The performance of whole genome bisulfite sequencing on DNBSEQ-Tx platform examined by different library preparation strategies. Heliyon 9, 16571.
    Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92.
    Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al., 2011. The variant call format and VCFtools. Bioinformatics 27, 2156-2158.
    DebMandal, M., Mandal, S., 2011. Coconut (Cocos nucifera L.: Arecaceae): in health promotion and disease prevention. Asian Pac. J. Trop. Med. 4, 241-247.
    Dumhai, R., Wanchana, S., Saensuk, C., Choowongkomon, K., Mahatheeranont, S., Kraithong, T., Toojinda, T., Vanavichit, A., Arikit, S., 2019. Discovery of a novel CnAMADH2 allele associated with higher levels of 2-acetyl-1-pyrroline (2AP) in yellow dwarf coconut (Cocos nucifera L.). Sci. Hortic. 243, 490-497.
    Flint-Garcia, S.A., Thuillet, A.C., Yu, J., Pressoir, G., Romero, S.M., Mitchell, S.E., Doebley, J., Kresovich, S., Goodman, M.M., Buckler, E.S., 2005. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 44, 1054-1064.
    Gaufichon, L., Marmagne, A., Belcram, K., Yoneyama, T., Sakakibara, Y., Hase, T., Grandjean, O., Clement, G., Citerne, S., Boutet-Mercey, S., et al., 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J. 91, 371-393.
    Guo, H., Lai, J., Li, C., Zhou, H., Wang, C., Ye, W., Zhong, Y., Zhao, X., Zhang, F., Yang, J., et al., 2022. Comparative Metabolomics Reveals Key Determinants in the Flavor and Nutritional Value of Coconut by HS-SPME/GC-MS and UHPLC-MS/MS. Metabolites 12, 691.
    Huang, T.C., Huang, Y.W., Hung, H.J., Ho, C.T., Wu, M.L., 2007. Delta1-pyrroline-5-carboxylic acid formed by proline dehydrogenase from the Bacillus subtilis ssp natto expressed in Escherichia coli as a precursor for 2-acetyl-1-pyrroline. J. Agric. Food Chem. 55, 5097-5102.
    Huang, T.C., Teng, C.S., Chang, J.L., Chuang, H.S., Ho, C.T., Wu, M.L., 2008. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with delta1-pyrroline-5-carbo xylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J. Agric. Food Chem. 56, 7399-7404.
    Huang, X., Lin, J., Xie, Q., Shi, J., Du, X., Pan, S., Tang, X., Qi, J., 2024. Soil Microbial Functions Linked Fragrant Rice 2-Acetyl-1-Pyrroline with Soil Active Carbon Pool: Evidence from Soil Metagenomic Sequencing of Tillage Practices. Agronomy 14, 1308.
    Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., et al., 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961-967.
    Imran, M., Shafiq, S., Ashraf, U., Qi, J., Mo, Z., Tang, X., 2023. Biosynthesis of 2-Acetyl-1-pyrroline in Fragrant Rice: Recent Insights into Agro-management, Environmental Factors, and Functional Genomics. J. Agric. Food Chem. 71, 4201-4215.
    Jirapong, C., Uthairatanakij, A., Noichinda, S., Kanlayanarat, S., Wongs-Aree, C., 2012. Comparison of volatile compounds between fresh and heat-processed aromatic coconut. Acta Horticulturae 943, 111-115.
    Kump, K.L., Bradbury, P.J., Wisser, R.J., Buckler, E.S., Belcher, A.R., Oropeza-Rosas, M.A., Zwonitzer, J.C., Kresovich, S., McMullen, M.D., Ware, D., et al., 2011. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43: 163-168.
    Li, H., Durbin, R., 2009a. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
    Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., 2009b. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.
    Li, N., He, Q., Wang, J., Wang, B., Zhao, J., Huang, S., Yang, T., Tang, Y., Yang, S., Aisimutuola, P., et al., 2023. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nat. Genet. 55, 852-860.
    Li, X., Wang, J., Su, M., Zhang, M., Hu, Y., Du, J., Zhou, H., Yang, X., Zhang, X., Jia, H., et al., 2023. Multiple-statistical genome-wide association analysis and genomic prediction of fruit aroma and agronomic traits in peaches. Hortic. Res. 10, 117.
    Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., et al., 2014. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220-1226.
    Lorenz, A.J., Hamblin, M.T., Jannink, J.L., 2010. Performance of Single Nucleotide Polymorphisms versus Haplotypes for Genome-Wide Association Analysis in Barley. PLoS ONE 5, e14079.
    Luo, H., Zhang, Q., Lai, R., Zhang, S., Yi, W., Tang, X., 2024a. Regulation of 2-Acetyl-1-pyrroline Content in Fragrant Rice under Different Temperatures at the Grain-Filling Stage. J. Agric. Food Chem. 72, 10521-10530.
    Luo, H., Zhang, Y., Yi, W., Zhang, S., Zhang, Q., Xing, P., Tang, X., 2024b. Foliar application of phenylalanine, tryptophan, and tyrosine in fragrant rice production: Aroma, yield, grain quality, and economic return. Eur. J. Agron. 155, 127117.
    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al., 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.
    Prades, A., Dornier, M., Diop, N., Pain, J.P., 2012. Coconut water preservation and processing: a review. Fruits 67, 157-171.
    Retief, J.D., 2000. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243-258.
    Riangwong, K., Wanchana, S., Aesomnuk, W., Saensuk, C., Nubankoh, P., Ruanjaichon, V., Kraithong, T., Toojinda, T., Vanavichit, A., Arikit, S., 2020. Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L.) in Thailand. Hortic Res. 7, 156.
    Romanczyk, L.J., Mcclelland, C.A., Post, L.S., Aitken, W.M., 1995. Formation of 2-acetyl-1-pyrroline by several Bacillus cereus strains isolated from cocoa fermentation boxes. J. Agric. Food Chem. 43, 469-475.
    Saensuk, C., Wanchana, S., Choowongkomon, K., Wongpornchai, S., Kraithong, T., Imsabai, W., Chaichoompu, E., Ruanjaichon, V., Toojinda, T., Vanavichit, A., et al., 2016. De novo transcriptome assembly and identification of the gene conferring a "pandan-like" aroma in coconut (Cocos nucifera L.). Plant Sci. 252, 324-334.
    Schieberle, P., 1990. The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust. Z Lebensm Unters Forch. 191, 206-209.
    Shen, X., Niu, X., Yang, Y., Yang, D., Li, J., Yu, F., Sun, X., Meng, X., 2024. Widely targeted metabolomics combined with E-tongue and E-nose reveal dynamic changes of tender coconut water in responses to the infection of Ceratocystis paradoxa. Food Chem. 439, 138035.
    Shen, X., Xiong, F., Niu, X., Gong, S., Sun, X., Xiao, Y., Yang, Y., Chen, F., 2023. Molecular mechanism of quality changes in solid endosperm of tender coconut during room temperature storage based on transcriptome and metabolome. Food Chem. 436, 137615.
    Stewart, C.N., Jr, Via, L.E., 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14, 748-750.
    Tegeder, M., Rentsch, D., 2010. Uptake and partitioning of amino acids and peptides. Mol. Plant 3, 997-1011.
    Vashishtha, K., Gaud, C., Andrews, S., Krueger, C., 2009. Librarian: A quality control tool to analyse sequencing library compositions. F1000Res. 11, 1122.
    Yoshihashi, T., Huong, N.T., Inatomi, H., 2002. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 50, 2001-2004.
    Yu, J., Zhu, C., Xuan, W., An, H., Tian, Y., Wang, B., Chi, W., Chen, G., Ge, Y., Li, J., et al., 2023. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat. Commun. 14, 3550.
    Zhou, L., Sun, X., Yarra, R., Iqbal, A., Wu, Q., Li, J., Yang, Y., 2023. Combined transcriptome and metabolome analysis of sugar and fatty acid of aromatic coconut and non-aromatic coconut in China. Food Chem. (Oxf) 8, 100190.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (0) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return