9.9
CiteScore
7.1
Impact Factor
Volume 52 Issue 8
Aug.  2025
Turn off MathJax
Article Contents

S-sulfenylation-mediated inhibition of the GSNOR1 activity regulates ovule development in Arabidopsis

doi: 10.1016/j.jgg.2025.01.007
Funds:

This work was supported by grants from the National Natural Science Foundation of China (32170312, 31830017, and 32200256) and State Key Laboratory of Plant Genomics (SKLPG2023-22). We thank the Arabidopsis Biological Resource Center for providing mutant seeds. We thank all members of the Zuo group for helpful discussion.

  • Received Date: 2025-01-09
  • Accepted Date: 2025-01-10
  • Publish Date: 2025-01-16
  • Reactive oxygen species (ROS) and nitric oxide (NO) are two critical classes of signaling molecules that regulate plant development and stress responses. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by the highly conserved GSNO reductase (GSNOR). However, the molecular mechanisms underlying ROS-mediated regulation of GSNOR remain largely unclear. Here, we show that H2O2 negatively regulates the activity of GSNOR1 during ovule development in Arabidopsis. S-sulfenylation of GSNOR1 at Cys-284 inhibits its enzymatic activity. A GSNOR1C284S mutation causes a reduction of the total SNO level in pistils, thereby disrupting NO homeostasis and eventually leading to defective ovule development. These findings illustrate a unique mechanism by which ROS regulates ovule development through S-sulfenylation-mediated inhibition of the GSNOR activity, thereby establishing a molecular link between ROS and NO signaling pathways in reproductive development.
  • loading
  • Ali, M.F., Muday, G.K., 2024. Reactive oxygen species are signaling molecules that modulate plant reproduction. Plant Cell Environ. 47, 1592-1605.
    Ali, S., Tyagi, A., Bae, H., 2023. ROS interplay between plant growth and stress biology: Challenges and future perspectives. Plant Physiol. Biochem. 203, 108032.
    Astier, J., Rasul, S., Koen, E., Manzoor, H., Besson-Bard, A., Lamotte, O., Jeandroz, S., Durner, J., Lindermayr, C., Wendehenne, D., 2011. S-nitrosylation: An emerging post-translational protein modification in plants. Plant Sci. 181, 527-533.
    Bassot, A., Chen, J., Simmen, T., 2021. Post-translational modification of cysteines: A key determinant of endoplasmic reticulum-mitochondria contacts (MERCs). Contact (Thousand Oaks) 4, 25152564211001213.
    Begara-Morales, J.C., Sanchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Perez, C., Lopez-Jaramillo, J., Padilla, M.N., Carreras, A., Corpas, F.J., Barroso, J.B., 2014. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J. Exp. Bot. 65, 527-538.
    Besson-Bard, A., Pugin, A., Wendehenne, D., 2008. New insights into nitric oxide signaling in plants. Annu. Rev. Plant Biol. 59, 21-39.
    Bi, G., Hu, M., Fu, L., Zhang, X., Zuo, J., Li, J., Yang, J., Zhou, J.M., 2022. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat. Plants 8, 1160-1175.
    Borg, M., Twell, D., 2010. Life after meiosis: patterning the angiosperm male gametophyte. Biochem. Soc. Trans. 38, 577-582.
    Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M.A., Fayos, J., Belles, J.M., Rodriguez, P.L., Serrano, R., 2007. The lithium tolerance of the Arabidopsis cat2 mutant reveals a cross-talk between oxidative stress and ethylene. Plant J. 52, 1052-1065.
    Cao, L., Karapetyan, S., Yoo, H., Chen, T., Mwimba, M., Zhang, X., Dong, X., 2024. H2O2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 385, 1211-1217.
    Chen, L., Wu, R., Feng, J., Feng, T., Wang, C., Hu, J., Zhan, N., Li, Y., Ma, X., Ren, B., et al., 2020. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev. Cell 53, 444-457.
    Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J., et al., 2009. The Arabidopsis PARAQUAT RESISTENT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res. 19, 1377-1387.
    Considine, M.J., Sandalio, L.M., Foyer, C.H., 2015. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann. Bot. 116, 469-473.
    De Smet, B., Willems, P., Fernandez-Fernandez, A.D., Alseekh, S., Fernie, A.R., Messens, J., Van Breusegem, F., 2019. In vivo detection of protein cysteine sulfenylation in plastids. Plant J. 97, 765-778.
    Dresselhaus, T., Franklin-Tong, N., 2013. Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol. Plant 6, 1018-1036.
    Duan, Q., Kita, D., Johnson, E.A., Aggarwal, M., Gates, L., Wu, H.M., Cheung, A.Y., 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5, 3129.
    Duan, Q., Liu, M.J., Kita, D., Jordan, S.S., Yeh, F.J., Yvon, R., Carpenter, H., Federico, A.N., Garcia-Valencia, L.E., Eyles, S.J., et al., 2020. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561-566.
    Feechan, A., Kwon, E., Yun, B.W., Wang, Y., Pallas, J.A., Loake, G.J., 2005. A central role for S-nitrosothiols in plant disease resistance. Proc. Natl. Acad. Sci. U. S. A. 102, 8054-8059.
    Feng, J., Chen, L., Zuo, J., 2019. Protein S-nitrosylation in plants: Current progresses and challenges. J. Integr. Plant Biol. 61, 1206-1223.
    Fernandez-Marcos, M., Sanz, L., Lewis, D.R., Muday, G.K., Lorenzo, O., 2011. Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc. Natl. Acad. Sci. U. S. A. 108, 18506-18511.
    Guerra, D., Ballard, K., Truebridge, I., Vierling, E., 2016. S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55, 2452-2464.
    Gupta, K.J., Kaladhar, V.C., Fitzpatrick, T.B., Fernie, A.R., Moeller, I.M., Loake, G.J., 2022. Nitric oxide regulation of plant metabolism. Mol. Plant 15, 228-242.
    Hater, F., Nakel, T., Gross-Hardt, R., 2020. Reproductive multitasking: The female gametophyte. Annu. Rev. Plant Biol. 71, 517-546.
    Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E., Stamler, J.S., 2005. Protein S-nitrosylation: Purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150-166.
    Higashiyama, T., Yang, W.C., 2017. Gametophytic pollen tube guidance: Attractant peptides, gametic controls, and receptors. Plant Physiol. 173, 112-121.
    Hourihan, J.M., Moronetti Mazzeo, L.E., Fernandez-Cardenas, L.P., Blackwell, T.K., 2016. Cysteine sulfenylation directs IRE-1 to activate the SKN-1/Nrf2 antioxidant response. Mol. Cell 63, 553-566.
    Huang, J., Willems, P., Wei, B., Tian, C., Ferreira, R.B., Bodra, N., Martinez Gache, S.A., Wahni, K., Liu, K., Vertommen, D., et al., 2019. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Proc. Natl. Acad. Sci. U. S. A. 116, 21256-21261.
    Huang, J., Yang, L., Yang, L., Wu, X., Cui, X., Zhang, L., Hui, J., Zhao, Y., Yang, H., Liu, S., et al., 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614, 303-308.
    Jing, H., Yang, X., Emenecker, R.J., Feng, J., Zhang, J., Figueiredo, M.R.A., Chaisupa, P., Wright, R.C., Holehouse, A.S., Strader, L.C., et al., 2023. Nitric oxide-mediated S-nitrosylation of IAA17 protein in intrinsically disordered region represses auxin signaling. J. Genet. Genomics 50, 473–485.
    Keyster, M., Klein, A., Egbichi, I., Jacobs, A., Ludidi, N., 2011. Nitric oxide increases the enzymatic activity of three ascorbate peroxidase isoforms in soybean root nodules. Plant Signal. Behav. 6, 956-961.
    Kolbert, Z., Molnai, A., Olah, D., Feigl, G., Horvath, E., Erdei, L., Ordog, A., Rudolf, E., Barth, T., Lindermayr, C., 2019. S-nitrosothiol signaling is involved in regulating hydrogen peroxide metabolism of Zinc-stressed Arabidopsis. Plant Cell Physiol. 60, 2449-2463.
    Kovacs, I., Holzmeister, C., Wirtz, M., Geerlof, A., Frohlich, T., Romling, G., Kuruthukulangarakoola, G.T., Linster, E., Hell, R., Arnold, G.J., et al., 2016. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front. Plant Sci. 7, 1669.
    Kubienova, L., Kopecny, D., Tylichova, M., Briozzo, P., Skopalova, J., Sebela, M., Navratil, M., Tache, R., Luhova, L., Barroso, J.B., et al., 2013. Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie 95, 889-902.
    Kwon, E., Feechan, A., Yun, B.W., Hwang, B.H., Pallas, J.A., Kang, J.G., Loake, G.J., 2012. AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236, 887-900.
    Lee, U., Wie, C., Fernandez, B.O., Feelisch, M., Vierling, E., 2008. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20, 786-802.
    Leitner, M., Vandelle, E., Gaupels, F., Bellin, D., Delledonne, M., 2009. NO signals in the haze: Nitric oxide signalling in plant defence. Curr. Opin. Plant Biol. 12, 451-458.
    Levesque-Lemay, M., Chabot, D., Hubbard, K., Chan, J.K., Miller, S., Robert, L.S., 2016. Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat. New Phytol. 209, 691-704.
    Li, Y., Chen, L., Mu, J., Zuo, J., 2013. LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol. 163, 1059-1070.
    Lin, A., Wang, Y., Tang, J., Xue, P., Li, C., Liu, L., Hu, B., Yang, F., Loake, G.J., Chu, C., 2012. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol. 158, 451-464.
    Lindermayr, C., 2018. Crosstalk between reactive oxygen species and nitric oxide in plants: Key role of S-nitrosoglutathione reductase. Free Radic. Biol. Med. 122, 110-115.
    Liu, C., Shen, L., Xiao, Y., Vyshedsky, D., Peng, C., Sun, X., Liu, Z., Cheng, L., Zhang, H., Han, Z., et al., 2021. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science 372, 171-175.
    Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J.S., 2001. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490-494.
    Liu, W.C., Song, R.F., Qiu, Y.M., Zheng, S.Q., Li, T.T., Wu, Y., Song, C.P., Lu, Y.T., Yuan, H.M., 2022. Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis. Dev. Cell 57, 1883-1898.
    Lo Conte, M., Carroll, K.S., 2013. The redox biochemistry of protein sulfenylation and sulfinylation. J. Biol. Chem. 288, 26480-26488.
    Lora, J., Yang, X., Tucker, M.R., 2019. Establishing a framework for female germline initiation in the plant ovule. J. Exp. Bot. 70, 2937-2949.
    Lundberg, J.O., Weitzberg, E., 2022. Nitric oxide signaling in health and disease. Cell 185, 2853-2878.
    Ma, T., Tan, J.R., Lu, J.Y., Li, S., Zhang, Y., 2024. S-acylation of YKT61 modulates its unconventional participation in the formation of SNARE complexes in Arabidopsis. J. Genet. Genomics 51, 1079–1088.
    Martin, M.V., Distefano, A.M., Zabaleta, E.J., Pagnussat, G.C., 2013a. New insights into the functional roles of reactive oxygen species during embryo sac development and fertilization in Arabidopsis thaliana. Plant Signal. Behav. 8, e25714.
    Martin, M.V., Fiol, D.F., Sundaresan, V., Zabaleta, E.J., Pagnussat, G.C., 2013b. oiwa, a female gametophytic mutant impaired in a mitochondrial manganese-superoxide dismutase, reveals crucial roles for reactive oxygen species during embryo sac development and fertilization in Arabidopsis. Plant Cell 25, 1573-1591.
    Meng, J.G., Xu, Y.J., Wang, W.Q., Yang, F., Chen, S.Y., Jia, P.F., Yang, W.C., Li, H.J., 2023. Central-cell-produced attractants control fertilization recovery. Cell 186, 3593-3605.
    Meng, J.G., Zhang, M.X., Yang, W.C., Li, H.J., 2019. TICKET attracts pollen tubes and mediates reproductive isolation between relative species in Brassicaceae. Sci. China Life Sci. 62, 1413-1419.
    Mittler, R., 2017. ROS are good. Trends Plant Sci. 22, 11-19.
    Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388-395.
    Okuda, S., Tsutsui, H., Shiina, K., Sprunck, S., Takeuchi, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., et al., 2009. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357-361.
    Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., Mauch, F., 2007. Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49, 159-172.
    Paulsen, C.E., Carroll, K.S., 2013. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 113, 4633-4679.
    Perez-Riverol, Y., Bai, J., Bandla, C., Garcia-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D.J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al., 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic. Acids Res. 50, D543-D552.
    Pratibha, P., Singh, S.K., Srinivasan, R., Bhat, S.R., Sreenivasulu, Y., 2017. Gametophyte development needs mitochondrial coproporphyrinogen III oxidase function. Plant Physiol. 174, 258-275.
    Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50, 2-18.
    Roos, G., Messens, J., 2011. Protein sulfenic acid formation: From cellular damage to redox regulation. Free Radic. Biol. Med. 51, 314-326.
    Shi, D.Q., Yang, W.C., 2011. Ovule development in Arabidopsis: progress and challenge. Curr. Opin. Plant Biol. 14, 74-80.
    Shi, Y.F., Wang, D.L., Wang, C., Culler, A.H., Kreiser, M.A., Suresh, J., Cohen, J.D., Pan, J., Baker, B., Liu, J.Z., 2015. Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol. Plant 8, 1350-1365.
    Sies, H., Jones, D.P., 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363-383.
    Smirnova, A.V., Matveyeva, N.P., Yermakov, I.P., 2014. Reactive oxygen species are involved in regulation of pollen wall cytomechanics. Plant Biol. (Stuttg) 16, 252-257.
    Sundaresan, V., Alandete-Saez, M., 2010. Pattern formation in miniature: the female gametophyte of flowering plants. Development 137, 179-189.
    Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., et al., 2018. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat. Commun. 9, 1063.
    Ticha, T., Lochman, J., Cincalova, L., Luhova, L., Petrivalsky, M., 2017. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun. 494, 27-33.
    Turkan, I., 2018. ROS and RNS: key signalling molecules in plants. J. Exp. Bot. 69, 3313-3315.
    Wang, J., Guo, X., Chen, Y., Liu, T., Zhu, J., Xu, S., Vierling, E., 2024a. Maternal nitric oxide homeostasis impacts female gametophyte development under optimal and stress conditions. Plant Cell 36, 2201-2218.
    Wang, W.Q., Meng, J.G., Yang, F., Xu, Y.J., Li, S.Z., Li, H.J., 2024b. A non-defensin peptide NPA1 attracts pollen tube in Arabidopsis. Seed Biology 3, e003.
    Wang, Y., Chu, C., 2020. S-nitrosylation control of ROS and RNS homeostasis in plants: The switching function of catalase. Mol. Plant 13, 946-948.
    Wang, Y.J., Bian, Y., Luo, J., Lu, M., Xiong, Y., Guo, S.Y., Yin, H.Y., Lin, X., Li, Q., Chang, C.C.Y., et al., 2017. Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nat. Cell Biol. 19, 808-819.
    Wani, K.I., Naeem, M., Castroverde, C.D.M., Kalaji, H.M., Albaqami, M., Aftab, T., 2021. Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int. J. Mol. Sci. 22, 9656.
    Waszczak, C., Akter, S., Jacques, S., Huang, J., Messens, J., Van Breusegem, F., 2015. Oxidative post-translational modifications of cysteine residues in plant signal transduction. J. Exp. Bot. 66, 2923-2934.
    Wilson, Z.A., Song, J., Taylor, B., Yang, C., 2011. The final split: the regulation of anther dehiscence. J. Exp. Bot. 62, 1633-1649.
    Xu, S., Guerra, D., Lee, U., Vierling, E., 2013. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front. Plant Sci. 4, 430.
    Xue, L., Li, S., Sheng, H., Feng, H., Xu, S., An, L., 2007. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in Cyanobacterium. Curr. Microbiol. 55, 294-301.
    Yang, H., Mu, J., Chen, L., Feng, J., Hu, J., Li, L., Zhou, J.M., Zuo, J., 2015. S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol. 167, 1604-1615.
    Yang, W.C., Shi, D.Q., Chen, Y.H., 2010. Female gametophyte development in flowering plants. Annu. Rev. Plant Biol. 61, 89-108.
    Yang, R., Yang, Z., Xing, M., Jing, Y., Zhang, Y., Zhang, K., Zhou, Y., Zhao, H., Qiao, W., Sun, J., 2023. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging. J. Genet. Genomics 50, 861–871.
    Yun, B.W., Feechan, A., Yin, M., Saidi, N.B., Le Bihan, T., Yu, M., Moore, J.W., Kang, J.G., Kwon, E., Spoel, S.H., et al., 2011. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264-268.
    Zeng, J., Dong, Z., Wu, H., Tian, Z., Zhao, Z., 2017. Redox regulation of plant stem cell fate. EMBO J. 36, 2844-2855.
    Zhai, X., Bai, J., Xu, W., Yang, X., Jia, Z., Xia, W., Wu, X., Liang, Q., Li, B., Jia, N., 2023. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. Plant J. 115, 1677-1698.
    Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., et al., 2018. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol. Cell 71, 142-154.
    Zhang, M.X., Zhu, S.S., Xu, Y.C., Guo, Y.L., Yang, W.C., Li, H.J., 2020. Transcriptional repression specifies the central cell for double fertilization. Proc. Natl. Acad. Sci. U. S. A. 117, 6231-6236.
    Zhong, S., Liu, M., Wang, Z., Huang, Q., Hou, S., Xu, Y.C., Ge, Z., Song, Z., Huang, J., Qiu, X., et al., 2019. Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis. Science 364, eaau9564.
    Zhou, H., Huang, J., Willems, P., Van Breusegem, F., Xie, Y., 2023. Cysteine thiol-based post-translational modification: What do we know about transcription factors? Trends Plant Sci. 28, 415-428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return