|
Besseau, S., Hoffmann, L., Geoffroy, P., Lapierre, C., Pollet, B., Legrand, M., 2007. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19, 148-162.
|
|
Blee, K.A., Choi, J.W., O'Connell, A.P., Schuch, W., Lewis, N.G., Bolwell, G.P., 2003. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64, 163-176.
|
|
Cui, J.J., Cui, Z.G., Lu, Y., Lv, X.F., Cao, Q.J., Hou, Y.L., Yang, X.Y., Gu, Y., 2022. Maize grain yield enhancement in modern hybrids associated with greater stalk lodging resistance at a high planting density: a case study in northeast China. Sci. Rep. 12, 14647.
|
|
Duan, C.X., Cao, Y.Y., Dong, H.Y., Xia, Y.S., Li, H., Hu, Q.Y., Yang, Z.H., Wang, X.M., 2022. Precise characterization of maize germplasm for resistance to pythium stalk rot and gibberella stalk rot. Scientia Agricultura Sinica 55, 265-279.
|
|
Fernandez-Perez, F., Pomar, F., Pedreno, M.A., Novo-Uzal, E., 2015a. The suppression of AtPrx52 affects fibers but not xylem lignification in Arabidopsis by altering the proportion of syringyl units. Physiol Plant. 154, 395-406.
|
|
Fernandez-Perez, F., Vivar, T., Pomar, F., Pedreno, M.A., Novo-Uzal, E., 2015b. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. J. Plant Physiol. 175, 86-94.
|
|
Francisco, J.S., Moraes, H.P., Dias, E.P., 2004. Evaluation of the Image-Pro Plus 4.5 software for automatic counting of labeled nuclei by PCNA immunohistochemistry. Braz. Oral Res. 18, 100-104.
|
|
Halpin, C., Holt, K., Chojecki, J., Oliver, D., Chabbert, B., Monties, B., Edwards, K., Barakate, A., Foxon, G.A., 1998. Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J. 14, 545-553.
|
|
Jeong, Y.J., Kim, Y.C., Lee, J.S., Kim, D.G., Lee, J.H., 2022. Reduced expression of PRX2/ATPRX1, PRX8, PRX35, and PRX73 affects cell elongation, vegetative growth, and vasculature structures in Arabidopsis thaliana. Plants (Basel). 11, 3353.
|
|
Jiao, S.P., Hazebroek, J.P., Chamberlin, M.A., Perkins, M., Sandhu, A.S., Gupta, R., Simcox, K.D., Li, Y.H., Prall, A., Heetland, L., et al., 2019. Chitinase-like1 plays a role in stalk tensile strength in maize. Plant Physiol. 181, 1127-1147.
|
|
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., Tanabe, M., 2019. New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1), D590-D595.
|
|
Kebrom, T.H., McKinley, B., Mullet, J.E., 2017. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum. Biotechnol Biofuels 10, 159.
|
|
Kidwai, M., Dhar, Y. V., Gautam, N., Tiwari, M., Ahmad, I. Z., Asif, M. H., Chakrabarty, D., 2019. Oryza sativa class III peroxidase (OsPRX38) overexpression in Arabidopsis thaliana reduces arsenic accumulation due to apoplastic lignification. J Hazard Mater., 362, 383-393.
|
|
Lapierre, C., Monties, B., and Rolando, C., 1986. Thioacidolysis of poplar lignins: identification of monomeric syringyl products and characterization of guaiacyl-syringyl lignin fractions. Holzforschung 40, 113-118.
|
|
Li, C.H., Song, W., Luo, Y.F., Gao, S.H., Zhang, R.Y., Shi, Z., Wang, X.Q., Wang, R.H., Wang, F.G., Wang, J.D., et al., 2019. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize. Mol. Plant 12, 402-409.
|
|
Li, D.D., Li, X.M., Wang, Z.C., Wang, H.C., Gao, J.Z., Liu, X.T., Zhang, Z., 2024. Transcription factors RhbZIP17 and RhWRKY30 enhance resistance to Botrytis cinerea by increasing lignin content in rose petals. J. Exp. Bot. 75, 1633-1646.
|
|
Li, L., Hill-Skinner, S., Liu, S.Z., Beuchle, D., Tang, H.M., Yeh, C.T., Nettleton, D., Schnable, P.S., 2015. The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J. 81, 493-504.
|
|
Li, M. X., Yeung, J. M., Cherny, S. S., Sham, P. C., 2012. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 131(5), 747-756.
|
|
Li, P., Zhu, T., Wang, Y., Zhang, X., Yang, X., Fang, S., Li, W., Rui, W., Yang, A., Duan, Y., et al., 2025. Natural variation in a cortex/epidermis-specific transcription factor bZIP89 determines lateral root development and drought resilience in maize. Sci. Adv. 11, eadt1113.
|
|
Li, Q., Fu, C.F., Liang, C.L., Ni, X.J., Zhao, X.H., Chen, M., Ou, L.J., 2022. Crop lodging and the roles of lignin, cellulose, and hemicellulose in lodging resistance. Agronomy 12, 1795.
|
|
Li, Q.G., Nie, S.J., Li, G.K., Du, J.Y., Ren, R.C., Yang, X., Liu, B.Y., Gao, X.L., Liu, T.J., Zhang, Z.M., et al., 2022. Identification and fine mapping of the recessive gene BK-5, which affects cell wall biosynthesis and plant brittleness in maize. Int. J. Mol. Sci. 23, 814.
|
|
Lin, C.Y., Li, Q.Z., Tunlaya-Anukit, S., Shi, R., Sun, Y.H., Wang, J.P., Liu, J., Loziuk, P., Edmunds, C.W., Miller, Z.D., et al., 2016. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa. Tree Genet Genomics 12, 1-18.
|
|
Lin, G., Li, P., Li, L., Wang, R., Zhao, W., Tian, M., Wu, J., Xu, S., Chen, Y., Feng, X., 2024. Discovery of ElABCG39: a key player in ingenol transmembrane efflux identified through genome-wide analysis of ABC transporters in Euphorbia lathyris L. Plant Cell Rep 43, 274.
|
|
Liu, H.J., Wang, X.Q., Xiao, Y.J., Luo, J.Y., Qiao, F., Yang, W.Y., Zhang, R.Y., Meng, Y.J., Sun, J.M., Yan, S.J., et al., 2020. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol. 21, 20.
|
|
Liu, X., Hu, X., Li, K., Liu, Z., Wu, Y., Wang, H., Huang, C., 2020. Genetic mapping and genomic selection for maize stalk strength. BMC Plant Biol. 20, 196.
|
|
Marjamaa, K., Kukkola, E.M., Fagerstedt, K.V., 2009. The role of xylem class III peroxidases in lignification. J. Exp. Bot. 60, 367-376.
|
|
Mazaheri, M., Heckwolf, M., Vaillancourt, B., Gage, J.L., Burdo, B., Heckwolf, S., Barry, K., Lipzen, A., Ribeiro, C.B., Kono, T.J.Y., et al., 2019. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biol. 19, 1-17.
|
|
Peiffer, J.A., Flint-Garcia, S.A., De Leon, N., McMullen, M.D., Kaeppler, S.M., Buckler, E.S., 2013. The genetic architecture of maize stalk strength. PLoS One 8, e67066.
|
|
Savidge, R.A., Forster, H., 2001. Coniferyl alcohol metabolism in conifers -- II. Coniferyl alcohol and dihydroconiferyl alcohol biosynthesis. Phytochemistry 57, 1095-1103.
|
|
Shigeto, J., Itoh, Y., Hirao, S., Ohira, K., Fujita, K., Tsutsumi, Y., 2015. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol. 57, 349-356.
|
|
Sindhu, A., Langewisch, T., Olek, A., Multani, D.S., McCann, M.C., Vermerris, W., Carpita, N.C., Johal, G., 2007. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. 145, 1444-1459.
|
|
Srivastava, A.K., Lu, Y., Zinta, G., Lang, Z., Zhu, J.K., 2018. UTR-dependent control of gene expression in plants. Trends Plant Sci. 23, 248-259.
|
|
Stubbs, C.J., Larson, R., Cook, D.D., 2022. Maize stalk stiffness and strength are primarily determined by morphological factors. Sci. Rep. 12, 720.
|
|
Tang, H.M., Liu, S., Hill-Skinner, S., Wu, W., Reed, D., Yeh, C.T., Nettleton, D., Schnable, P.S., 2014. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J. 77, 380-392.
|
|
Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., et al., 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 4, 41.
|
|
Vera Alvarez, R., Pongor, L.S., Marino-Ramirez, L., Landsman, D., 2019. TPMCalculator: one-step software to quantify mRNA abundance of genomic features. Bioinformatics 35, 1960-1962.
|
|
Vignols, F., Rigau, J., Torres, M.A., Capellades, M., Puigdomenech, P., 1995. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7, 407-416.
|
|
Wang, X.Q., Chen, Y.N., Sun, X., Li, J.H., Zhang, R.Y., Jiao, Y.Y., Wang, R.H., Song, W., Zhao, J.R., 2022. Characteristics and candidate genes associated with excellent stalk strength in maize (Zea mays L.). Front. Plant Sci. 13, 957566.
|
|
Wang, X.Q., Shi, Z., Zhang, R.Y., Sun, X., Wang, J.D., Wang, S., Zhang, Y., Zhao, Y.X., Su, A.G., Li, C.H., et al., 2020. Stalk architecture, cell wall composition, and QTL underlying high stalk flexibility for improved lodging resistance in maize. BMC Plant Biol. 20, 515.
|
|
Wang, X.Q., Zhang, R.Y., Shi, Z., Zhang, Y., Sun, X., Ji, Y., Zhao, Y.X., Wang, J.D., Zhang, Y.X., Xing, J.F., et al., 2019. Multi-omics analysis of the development and fracture resistance for maize internode. Sci Rep, 9(1), 8183.
|
|
Wang, Y., Wang, Q.Q., Zhao, Y., Han, G.M., Zhu, S.W., 2015. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 566, 95-108.
|
|
Xiao, S.L., Li, Z.Y., Zhang, H.X., Su, A.G., Li, C.H., Zhang, R.Y, Zhao, Y.X., Xing, J.F., Song, W., Zhao, J.R., 2023. An iTRAQ-based quantitative proteomic analysis reveals the role of mitochondrial complex I subunits in S-type cytoplasmic male sterility of maize. Agric Commun 1(2):100013.
|
|
Xiao, Y., Tong, H., Yang, X., et al., 2016. Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytol 210(3):1095-1106.
|
|
Xie, L.Y., Wen, D.X., Wu, C.L., Zhang, C.Q., 2022. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength. BMC Plant Biol. 22, 49.
|
|
Xiong, W.D., Wu, Z.Y., Liu, Y.C., Li, Y., Su, K.L., Bai, Z.T., Guo, S.Y., Hu, Z.B., Zhang, Z.M., Bao, Y., et al., 2019. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnol Biofuels. 12, 82.
|
|
Xu, B.Q., Hao, Y., Li, S.T., Du, D.D., Xiao, D.D., Chen, M.M., Song, Y.G., Wei, G.L., Zong, W.B., Guo, X.T., et al., 2025. Fine regulation of heading date by editing the untranslated regions of heading-related genes in rice. Plant Biotechnol J. 10.1111/pbi.70114.
|
|
Xue, J., Xie, R.Z., Zhang, W.F., Wang, K.R., Hou, P., Ming, B., Guo, L., Li, S.K., 2017. Research progress on reduced lodging of high-yield and -density maize. J. Integr. Agric. 16, 2717-2725.
|
|
Yang, X.H., Gao, S.B., Xu, S.T., Zhang, Z.X., M. Prasanna, B., Li, L., Li, J.S., Yan, J.B., 2011. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511-526.
|
|
Yoo, S.D., Cho, Y.H., Sheen, J., 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565-1572.
|
|
Yoon, J., Choi, H., An, G., 2015. Roles of lignin biosynthesis and regulatory genes in plant development. J. Integr. Plant Biol. 57, 902-912.
|
|
Zhai, X.Z., Yan, X.C., Zenda, T.S., Wang, N., Dong, A.Y., Yang, Q., Zhong, Y., Xing, Y., Duan, H.J., 2024. Overexpression of the peroxidase gene ZmPRX1 increases maize seedling drought tolerance by promoting root development and lignification. Crop J. 12, 753-765.
|
|
Zhang, F., Niu, L., Li, Y., Zhou, X., Zhang, H., Wu, X., Liu, H., Wang, W., 2025. Maize peroxidase ZmPrx25 modulates apoplastic ROS homeostasis and promotes seed germination and growth under osmotic and drought stresses. Antioxidants. 14, 1067.
|
|
Zhang, Y.L., Liu, P., Zhang, X.X., Zheng, Q., Chen, M., Ge, F., Li, Z.L., Sun, W.T., Guan, Z.R., Liang, T.H., et al., 2018. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Front Plant Sci. 9, 611.
|
|
Zhao, B.H., Li, K., Wang, M., Liu, Z.Y., Yin, P.F., Wang, W.D., Li, Z.G., Li, X.W., Zhang, L.L., Han, Y.J., et al., 2024. Genetic basis of maize stalk strength decoded via linkage and association mapping. Plant J. 117, 1558-1573.
|